Skip to content

Instantly share code, notes, and snippets.

@MalcolmMielle
Last active July 3, 2024 09:18
Show Gist options
  • Save MalcolmMielle/8e1ef4f0f9ffb15d5a0d9b746c1bc469 to your computer and use it in GitHub Desktop.
Save MalcolmMielle/8e1ef4f0f9ffb15d5a0d9b746c1bc469 to your computer and use it in GitHub Desktop.
Kalman filter to calculate roll pitch yaw. Based on the BaseKalman in KalmanFilter.py
def convert_acc(acc):
"""Convert raw accelerometer measurements in roll pitch yaw
https://stackoverflow.com/questions/3755059/3d-accelerometer-calculate-the-orientation
The yaw equation comes from here https://robotics.stackexchange.com/questions/14305/yaw-from-accelerometer-no-so-what-do-these-equations-actually-mean
If you have a magnetometer check out https://habr.com/en/post/499190/
Args:
acc (np.array): Array containing the three raw measurements on the accelerometer along
x, y, z
Returns:
np.array: numpy array with [roll, pitch, yaw]
"""
roll = math.atan2(acc[1], acc[2]) * (180 / math.pi)
pitch = math.atan2(-acc[0], (math.sqrt((acc[1]*acc[1]) + (acc[2]*acc[2])))) * (180 / math.pi)
yaw = math.atan(math.sqrt((acc[1]*acc[1]) +(acc[0]*acc[0])) / acc[2]) * (180 / math.pi)
return np.array([roll, pitch, yaw])
def convert_gyro(orientation, gyro):
"""Convert raw gyroscope measurements in roll pitch yaw rate of change
Args:
orientation (np.array): Actual position of IMU as a numpy array containing [roll, pitch, yaw]
gyro (np.array): Raw measurements of the gyroscope as a numpy array [Gx, Gy, Gz]
Returns:
np.array: numpy array with [roll, pitch, yaw] rates of change
"""
# Transform gyro measurement into roll pitch yaw
roll = orientation[0][0] #phi
pitch = orientation[1][0] #theta
# from http://www.chrobotics.com/library/understanding-euler-angles
mat = np.array([[1, math.sin(roll) * math.tan(pitch), math.cos(roll) * math.tan(pitch)],
[0, math.cos(roll), -math.sin(roll)],
[0, math.sin(roll) / math.cos(pitch), math.cos(roll) / math.cos(pitch)]])
rate_change_gyro = np.matmul(mat, gyro)
return rate_change_gyro
class Kalman_IMU(BK.BaseKF):
"""Kalman filter tracking the orientation of an IMU
"""
def __init__(self, z0: np.array, r: np.array, q: np.array, pval) -> None:
super().__init__(z0, r, q, pval=pval)
self.gyroconv = list()
def f(self, x, u):
"""Get as input the gyroscope data and integrate it to give the new angles of the IMU
Args:
x (np.array): IMU roll pitch yaw
u (np.array): Gyrosocope rate of changes for roll pitch and yaw and time difference between
this measurement and the last one [roll, pitch, yaw, time_diff]
Returns:
(np.array, np.array): tuple containing the new x and the stae model matrix A
"""
rate_change_gyro = convert_gyro(x, u[0:-1])
rate_change_gyro = np.reshape(rate_change_gyro, (-1, 1))
self.gyroconv.append(rate_change_gyro)
B = np.diag(np.full(u.shape[0] - 1, u[-1]))
A = np.eye(self.n)
x_n = np.matmul(A, x) + np.matmul(B, rate_change_gyro)
# Here returning A---i.e. identity matrix---instead of the jacobian leads to the normal kalman filter
# instead of the EKF
return x_n, A
def h(self, x):
# Observation function is identity
return x, np.eye(self.n)
def update(self, z):
acc = convert_acc(z)
acc = np.reshape(acc, (-1, 1))
#Call update with accelerometer data
super().update(acc)
@ravitejabankuru
Copy link

I need a c program

@firth650
Copy link

firth650 commented Jul 3, 2024

Hi, do you have an example of how to integrate this into IMU code this in practise?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment