Created
April 13, 2019 11:44
-
-
Save ManivannanMurugavel/85cab9e1549a0722cc06712ab92e2c02 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from ctypes import * | |
import math | |
import random | |
import numpy as np | |
from numpy.linalg import norm | |
import cv2 | |
def sample(probs): | |
s = sum(probs) | |
probs = [a/s for a in probs] | |
r = random.uniform(0, 1) | |
for i in range(len(probs)): | |
r = r - probs[i] | |
if r <= 0: | |
return i | |
return len(probs)-1 | |
def c_array(ctype, values): | |
arr = (ctype*len(values))() | |
arr[:] = values | |
return arr | |
class BOX(Structure): | |
_fields_ = [("x", c_float), | |
("y", c_float), | |
("w", c_float), | |
("h", c_float)] | |
class DETECTION(Structure): | |
_fields_ = [("bbox", BOX), | |
("classes", c_int), | |
("prob", POINTER(c_float)), | |
("mask", POINTER(c_float)), | |
("objectness", c_float), | |
("sort_class", c_int)] | |
class IMAGE(Structure): | |
_fields_ = [("w", c_int), | |
("h", c_int), | |
("c", c_int), | |
("data", POINTER(c_float))] | |
class METADATA(Structure): | |
_fields_ = [("classes", c_int), | |
("names", POINTER(c_char_p))] | |
colors = [tuple(255 * np.random.rand(3)) for _ in range(15)] | |
lib = CDLL("./libdarknet.so", RTLD_GLOBAL) | |
lib.network_width.argtypes = [c_void_p] | |
lib.network_width.restype = c_int | |
lib.network_height.argtypes = [c_void_p] | |
lib.network_height.restype = c_int | |
predict = lib.network_predict | |
predict.argtypes = [c_void_p, POINTER(c_float)] | |
predict.restype = POINTER(c_float) | |
set_gpu = lib.cuda_set_device | |
set_gpu.argtypes = [c_int] | |
make_image = lib.make_image | |
make_image.argtypes = [c_int, c_int, c_int] | |
make_image.restype = IMAGE | |
get_network_boxes = lib.get_network_boxes | |
get_network_boxes.argtypes = [c_void_p, c_int, c_int, c_float, c_float, POINTER(c_int), c_int, POINTER(c_int)] | |
get_network_boxes.restype = POINTER(DETECTION) | |
make_network_boxes = lib.make_network_boxes | |
make_network_boxes.argtypes = [c_void_p] | |
make_network_boxes.restype = POINTER(DETECTION) | |
free_detections = lib.free_detections | |
free_detections.argtypes = [POINTER(DETECTION), c_int] | |
free_ptrs = lib.free_ptrs | |
free_ptrs.argtypes = [POINTER(c_void_p), c_int] | |
network_predict = lib.network_predict | |
network_predict.argtypes = [c_void_p, POINTER(c_float)] | |
reset_rnn = lib.reset_rnn | |
reset_rnn.argtypes = [c_void_p] | |
load_net = lib.load_network | |
load_net.argtypes = [c_char_p, c_char_p, c_int] | |
load_net.restype = c_void_p | |
do_nms_obj = lib.do_nms_obj | |
do_nms_obj.argtypes = [POINTER(DETECTION), c_int, c_int, c_float] | |
do_nms_sort = lib.do_nms_sort | |
do_nms_sort.argtypes = [POINTER(DETECTION), c_int, c_int, c_float] | |
free_image = lib.free_image | |
free_image.argtypes = [IMAGE] | |
letterbox_image = lib.letterbox_image | |
letterbox_image.argtypes = [IMAGE, c_int, c_int] | |
letterbox_image.restype = IMAGE | |
load_meta = lib.get_metadata | |
lib.get_metadata.argtypes = [c_char_p] | |
lib.get_metadata.restype = METADATA | |
load_image = lib.load_image_color | |
load_image.argtypes = [c_char_p, c_int, c_int] | |
load_image.restype = IMAGE | |
rgbgr_image = lib.rgbgr_image | |
rgbgr_image.argtypes = [IMAGE] | |
predict_image = lib.network_predict_image | |
predict_image.argtypes = [c_void_p, IMAGE] | |
predict_image.restype = POINTER(c_float) | |
def classify(net, meta, im): | |
out = predict_image(net, im) | |
res = [] | |
for i in range(meta.classes): | |
res.append((meta.names[i], out[i])) | |
res = sorted(res, key=lambda x: -x[1]) | |
return res | |
def detect(net, meta, image, thresh=.25, hier_thresh=.5, nms=.45): | |
im = load_image(image.encode('utf-8'), 0, 0) | |
num = c_int(0) | |
pnum = pointer(num) | |
predict_image(net, im) | |
dets = get_network_boxes(net, im.w, im.h, thresh, hier_thresh, None, 0, pnum) | |
num = pnum[0] | |
if (nms): do_nms_obj(dets, num, meta.classes, nms); | |
res = [] | |
for j in range(num): | |
for i in range(meta.classes): | |
if dets[j].prob[i] > 0: | |
b = dets[j].bbox | |
res.append((meta.names[i], dets[j].prob[i], (b.x, b.y, b.w, b.h))) | |
res = sorted(res, key=lambda x: -x[1]) | |
free_image(im) | |
free_detections(dets, num) | |
return res | |
detected_objects = ['person'] | |
font = cv2.FONT_HERSHEY_SIMPLEX | |
net = load_net("cfg/yolov3.cfg".encode('utf-8'), "yolov3.weights".encode('utf-8'), 0) | |
meta = load_meta("cfg/coco.data".encode('utf-8')) | |
# cap = cv2.VideoCapture(0) | |
less = 100 | |
cap = cv2.VideoCapture('outpy.avi') | |
def main(): | |
n_frame = 8 | |
ref_n_frame_axies = [] | |
ref_n_frame_label = [] | |
ref_n_frame_axies_flatten = [] | |
ref_n_frame_label_flatten = [] | |
label_cnt = 1 | |
frm_num = 1 | |
min_distance = 50 | |
while(True): | |
ret,img = cap.read() | |
if ret == True: | |
cur_frame_axies = [] | |
cur_frame_label = [] | |
cv2.imwrite('test.jpg',img) | |
outputs = detect(net, meta, "test.jpg") | |
for color,output in zip(colors,outputs): | |
text = output[0].decode('utf-8') | |
x = int(output[2][0]) | |
y = int(output[2][1]) | |
fw = int(output[2][2]) | |
fh = int(output[2][3]) | |
w = int(fw/2) | |
h = int(fh/2) | |
acc = int(output[1] * 100) | |
left = y - h | |
top = x - w | |
right = y + h | |
bottom = x + w | |
lbl = float('nan') | |
if text in detected_objects: | |
if(len(ref_n_frame_label_flatten) > 0): | |
b = np.array([(x,y)]) | |
a = np.array(ref_n_frame_axies_flatten) | |
distance = norm(a-b,axis=1) | |
min_value = distance.min() | |
if(min_value < min_distance): | |
idx = np.where(distance==min_value)[0][0] | |
lbl = ref_n_frame_label_flatten[idx] | |
# print(idx) | |
if(math.isnan(lbl)): | |
lbl = label_cnt | |
label_cnt += 1 | |
cur_frame_label.append(lbl) | |
cur_frame_axies.append((x,y)) | |
cv2.rectangle(img,(top,left),(bottom,right),color,2) | |
cv2.putText(img,'{}{}-{}%'.format(text,lbl,acc),(top,left), font, 1,(255,255,255),2) | |
if(len(ref_n_frame_axies) == n_frame): | |
del ref_n_frame_axies[0] | |
del ref_n_frame_label[0] | |
ref_n_frame_label.append(cur_frame_label) | |
ref_n_frame_axies.append(cur_frame_axies) | |
ref_n_frame_axies_flatten = [a for ref_n_frame_axie in ref_n_frame_axies for a in ref_n_frame_axie] | |
ref_n_frame_label_flatten = [b for ref_n_frame_lbl in ref_n_frame_label for b in ref_n_frame_lbl] | |
cv2.imshow('image',img) | |
if cv2.waitKey(1) & 0xFF == ord('q'): | |
break | |
else: | |
break | |
cap.release() | |
cv2.destroyAllWindows() | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment