Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save ManivannanMurugavel/85cab9e1549a0722cc06712ab92e2c02 to your computer and use it in GitHub Desktop.
Save ManivannanMurugavel/85cab9e1549a0722cc06712ab92e2c02 to your computer and use it in GitHub Desktop.
from ctypes import *
import math
import random
import numpy as np
from numpy.linalg import norm
import cv2
def sample(probs):
s = sum(probs)
probs = [a/s for a in probs]
r = random.uniform(0, 1)
for i in range(len(probs)):
r = r - probs[i]
if r <= 0:
return i
return len(probs)-1
def c_array(ctype, values):
arr = (ctype*len(values))()
arr[:] = values
return arr
class BOX(Structure):
_fields_ = [("x", c_float),
("y", c_float),
("w", c_float),
("h", c_float)]
class DETECTION(Structure):
_fields_ = [("bbox", BOX),
("classes", c_int),
("prob", POINTER(c_float)),
("mask", POINTER(c_float)),
("objectness", c_float),
("sort_class", c_int)]
class IMAGE(Structure):
_fields_ = [("w", c_int),
("h", c_int),
("c", c_int),
("data", POINTER(c_float))]
class METADATA(Structure):
_fields_ = [("classes", c_int),
("names", POINTER(c_char_p))]
colors = [tuple(255 * np.random.rand(3)) for _ in range(15)]
lib = CDLL("./libdarknet.so", RTLD_GLOBAL)
lib.network_width.argtypes = [c_void_p]
lib.network_width.restype = c_int
lib.network_height.argtypes = [c_void_p]
lib.network_height.restype = c_int
predict = lib.network_predict
predict.argtypes = [c_void_p, POINTER(c_float)]
predict.restype = POINTER(c_float)
set_gpu = lib.cuda_set_device
set_gpu.argtypes = [c_int]
make_image = lib.make_image
make_image.argtypes = [c_int, c_int, c_int]
make_image.restype = IMAGE
get_network_boxes = lib.get_network_boxes
get_network_boxes.argtypes = [c_void_p, c_int, c_int, c_float, c_float, POINTER(c_int), c_int, POINTER(c_int)]
get_network_boxes.restype = POINTER(DETECTION)
make_network_boxes = lib.make_network_boxes
make_network_boxes.argtypes = [c_void_p]
make_network_boxes.restype = POINTER(DETECTION)
free_detections = lib.free_detections
free_detections.argtypes = [POINTER(DETECTION), c_int]
free_ptrs = lib.free_ptrs
free_ptrs.argtypes = [POINTER(c_void_p), c_int]
network_predict = lib.network_predict
network_predict.argtypes = [c_void_p, POINTER(c_float)]
reset_rnn = lib.reset_rnn
reset_rnn.argtypes = [c_void_p]
load_net = lib.load_network
load_net.argtypes = [c_char_p, c_char_p, c_int]
load_net.restype = c_void_p
do_nms_obj = lib.do_nms_obj
do_nms_obj.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]
do_nms_sort = lib.do_nms_sort
do_nms_sort.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]
free_image = lib.free_image
free_image.argtypes = [IMAGE]
letterbox_image = lib.letterbox_image
letterbox_image.argtypes = [IMAGE, c_int, c_int]
letterbox_image.restype = IMAGE
load_meta = lib.get_metadata
lib.get_metadata.argtypes = [c_char_p]
lib.get_metadata.restype = METADATA
load_image = lib.load_image_color
load_image.argtypes = [c_char_p, c_int, c_int]
load_image.restype = IMAGE
rgbgr_image = lib.rgbgr_image
rgbgr_image.argtypes = [IMAGE]
predict_image = lib.network_predict_image
predict_image.argtypes = [c_void_p, IMAGE]
predict_image.restype = POINTER(c_float)
def classify(net, meta, im):
out = predict_image(net, im)
res = []
for i in range(meta.classes):
res.append((meta.names[i], out[i]))
res = sorted(res, key=lambda x: -x[1])
return res
def detect(net, meta, image, thresh=.25, hier_thresh=.5, nms=.45):
im = load_image(image.encode('utf-8'), 0, 0)
num = c_int(0)
pnum = pointer(num)
predict_image(net, im)
dets = get_network_boxes(net, im.w, im.h, thresh, hier_thresh, None, 0, pnum)
num = pnum[0]
if (nms): do_nms_obj(dets, num, meta.classes, nms);
res = []
for j in range(num):
for i in range(meta.classes):
if dets[j].prob[i] > 0:
b = dets[j].bbox
res.append((meta.names[i], dets[j].prob[i], (b.x, b.y, b.w, b.h)))
res = sorted(res, key=lambda x: -x[1])
free_image(im)
free_detections(dets, num)
return res
detected_objects = ['person']
font = cv2.FONT_HERSHEY_SIMPLEX
net = load_net("cfg/yolov3.cfg".encode('utf-8'), "yolov3.weights".encode('utf-8'), 0)
meta = load_meta("cfg/coco.data".encode('utf-8'))
# cap = cv2.VideoCapture(0)
less = 100
cap = cv2.VideoCapture('outpy.avi')
def main():
n_frame = 8
ref_n_frame_axies = []
ref_n_frame_label = []
ref_n_frame_axies_flatten = []
ref_n_frame_label_flatten = []
label_cnt = 1
frm_num = 1
min_distance = 50
while(True):
ret,img = cap.read()
if ret == True:
cur_frame_axies = []
cur_frame_label = []
cv2.imwrite('test.jpg',img)
outputs = detect(net, meta, "test.jpg")
for color,output in zip(colors,outputs):
text = output[0].decode('utf-8')
x = int(output[2][0])
y = int(output[2][1])
fw = int(output[2][2])
fh = int(output[2][3])
w = int(fw/2)
h = int(fh/2)
acc = int(output[1] * 100)
left = y - h
top = x - w
right = y + h
bottom = x + w
lbl = float('nan')
if text in detected_objects:
if(len(ref_n_frame_label_flatten) > 0):
b = np.array([(x,y)])
a = np.array(ref_n_frame_axies_flatten)
distance = norm(a-b,axis=1)
min_value = distance.min()
if(min_value < min_distance):
idx = np.where(distance==min_value)[0][0]
lbl = ref_n_frame_label_flatten[idx]
# print(idx)
if(math.isnan(lbl)):
lbl = label_cnt
label_cnt += 1
cur_frame_label.append(lbl)
cur_frame_axies.append((x,y))
cv2.rectangle(img,(top,left),(bottom,right),color,2)
cv2.putText(img,'{}{}-{}%'.format(text,lbl,acc),(top,left), font, 1,(255,255,255),2)
if(len(ref_n_frame_axies) == n_frame):
del ref_n_frame_axies[0]
del ref_n_frame_label[0]
ref_n_frame_label.append(cur_frame_label)
ref_n_frame_axies.append(cur_frame_axies)
ref_n_frame_axies_flatten = [a for ref_n_frame_axie in ref_n_frame_axies for a in ref_n_frame_axie]
ref_n_frame_label_flatten = [b for ref_n_frame_lbl in ref_n_frame_label for b in ref_n_frame_lbl]
cv2.imshow('image',img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
else:
break
cap.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
main()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment