Created
April 8, 2019 10:50
-
-
Save ManivannanMurugavel/e0d80cfa1806084f85c72a16474e6410 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from ctypes import * | |
import math | |
import random | |
import numpy as np | |
from numpy.linalg import norm | |
import cv2 | |
def sample(probs): | |
s = sum(probs) | |
probs = [a/s for a in probs] | |
r = random.uniform(0, 1) | |
for i in range(len(probs)): | |
r = r - probs[i] | |
if r <= 0: | |
return i | |
return len(probs)-1 | |
def c_array(ctype, values): | |
arr = (ctype*len(values))() | |
arr[:] = values | |
return arr | |
class BOX(Structure): | |
_fields_ = [("x", c_float), | |
("y", c_float), | |
("w", c_float), | |
("h", c_float)] | |
class DETECTION(Structure): | |
_fields_ = [("bbox", BOX), | |
("classes", c_int), | |
("prob", POINTER(c_float)), | |
("mask", POINTER(c_float)), | |
("objectness", c_float), | |
("sort_class", c_int)] | |
class IMAGE(Structure): | |
_fields_ = [("w", c_int), | |
("h", c_int), | |
("c", c_int), | |
("data", POINTER(c_float))] | |
class METADATA(Structure): | |
_fields_ = [("classes", c_int), | |
("names", POINTER(c_char_p))] | |
colors = [tuple(255 * np.random.rand(3)) for _ in range(15)] | |
lib = CDLL("./libdarknet.so", RTLD_GLOBAL) | |
lib.network_width.argtypes = [c_void_p] | |
lib.network_width.restype = c_int | |
lib.network_height.argtypes = [c_void_p] | |
lib.network_height.restype = c_int | |
predict = lib.network_predict | |
predict.argtypes = [c_void_p, POINTER(c_float)] | |
predict.restype = POINTER(c_float) | |
set_gpu = lib.cuda_set_device | |
set_gpu.argtypes = [c_int] | |
make_image = lib.make_image | |
make_image.argtypes = [c_int, c_int, c_int] | |
make_image.restype = IMAGE | |
get_network_boxes = lib.get_network_boxes | |
get_network_boxes.argtypes = [c_void_p, c_int, c_int, c_float, c_float, POINTER(c_int), c_int, POINTER(c_int)] | |
get_network_boxes.restype = POINTER(DETECTION) | |
make_network_boxes = lib.make_network_boxes | |
make_network_boxes.argtypes = [c_void_p] | |
make_network_boxes.restype = POINTER(DETECTION) | |
free_detections = lib.free_detections | |
free_detections.argtypes = [POINTER(DETECTION), c_int] | |
free_ptrs = lib.free_ptrs | |
free_ptrs.argtypes = [POINTER(c_void_p), c_int] | |
network_predict = lib.network_predict | |
network_predict.argtypes = [c_void_p, POINTER(c_float)] | |
reset_rnn = lib.reset_rnn | |
reset_rnn.argtypes = [c_void_p] | |
load_net = lib.load_network | |
load_net.argtypes = [c_char_p, c_char_p, c_int] | |
load_net.restype = c_void_p | |
do_nms_obj = lib.do_nms_obj | |
do_nms_obj.argtypes = [POINTER(DETECTION), c_int, c_int, c_float] | |
do_nms_sort = lib.do_nms_sort | |
do_nms_sort.argtypes = [POINTER(DETECTION), c_int, c_int, c_float] | |
free_image = lib.free_image | |
free_image.argtypes = [IMAGE] | |
letterbox_image = lib.letterbox_image | |
letterbox_image.argtypes = [IMAGE, c_int, c_int] | |
letterbox_image.restype = IMAGE | |
load_meta = lib.get_metadata | |
lib.get_metadata.argtypes = [c_char_p] | |
lib.get_metadata.restype = METADATA | |
load_image = lib.load_image_color | |
load_image.argtypes = [c_char_p, c_int, c_int] | |
load_image.restype = IMAGE | |
rgbgr_image = lib.rgbgr_image | |
rgbgr_image.argtypes = [IMAGE] | |
predict_image = lib.network_predict_image | |
predict_image.argtypes = [c_void_p, IMAGE] | |
predict_image.restype = POINTER(c_float) | |
def classify(net, meta, im): | |
out = predict_image(net, im) | |
res = [] | |
for i in range(meta.classes): | |
res.append((meta.names[i], out[i])) | |
res = sorted(res, key=lambda x: -x[1]) | |
return res | |
def detect(net, meta, image, thresh=.25, hier_thresh=.5, nms=.45): | |
im = load_image(image.encode('utf-8'), 0, 0) | |
num = c_int(0) | |
pnum = pointer(num) | |
predict_image(net, im) | |
dets = get_network_boxes(net, im.w, im.h, thresh, hier_thresh, None, 0, pnum) | |
num = pnum[0] | |
if (nms): do_nms_obj(dets, num, meta.classes, nms); | |
res = [] | |
for j in range(num): | |
for i in range(meta.classes): | |
if dets[j].prob[i] > 0: | |
b = dets[j].bbox | |
res.append((meta.names[i], dets[j].prob[i], (b.x, b.y, b.w, b.h))) | |
res = sorted(res, key=lambda x: -x[1]) | |
free_image(im) | |
free_detections(dets, num) | |
return res | |
detected_objects = ['person'] | |
font = cv2.FONT_HERSHEY_SIMPLEX | |
net = load_net("cfg/yolov3.cfg".encode('utf-8'), "yolov3.weights".encode('utf-8'), 0) | |
meta = load_meta("cfg/coco.data".encode('utf-8')) | |
# cap = cv2.VideoCapture(0) | |
less = 100 | |
cap = cv2.VideoCapture(0) | |
def main(): | |
ref_frame_axies = [] | |
ref_frame_label = [] | |
label_cnt = 1 | |
min_distance = 50 | |
while(True): | |
ret,img = cap.read() | |
if ret == True: | |
cur_frame_axies = [] | |
cur_frame_label = [] | |
cv2.imwrite('test.jpg',img) | |
outputs = detect(net, meta, "test.jpg") | |
for color,output in zip(colors,outputs): | |
text = output[0].decode('utf-8') | |
x = int(output[2][0]) | |
y = int(output[2][1]) | |
fw = int(output[2][2]) | |
fh = int(output[2][3]) | |
w = int(fw/2) | |
h = int(fh/2) | |
acc = int(output[1] * 100) | |
left = y - h | |
top = x - w | |
right = y + h | |
bottom = x + w | |
lbl = float('nan') | |
if text in detected_objects: | |
if(len(ref_frame_label) > 0): | |
b = np.array([(x,y)]) | |
a = np.array(ref_frame_axies) | |
distance = norm(a-b,axis=1) | |
min_value = distance.min() | |
if(min_value < min_distance): | |
idx = np.where(distance==min_value)[0][0] | |
lbl = ref_frame_label[idx] | |
if(math.isnan(lbl)): | |
lbl = label_cnt | |
label_cnt += 1 | |
cur_frame_label.append(lbl) | |
cur_frame_axies.append((x,y)) | |
cv2.rectangle(img,(top,left),(bottom,right),color,2) | |
cv2.putText(img,'{}{}-{}%'.format(text,lbl,acc),(top,left), font, 1,(255,255,255),2) | |
ref_frame_label = cur_frame_label | |
ref_frame_axies = cur_frame_axies | |
cv2.imshow('image',img) | |
if cv2.waitKey(1) & 0xFF == ord('q'): | |
break | |
else: | |
break | |
cap.release() | |
cv2.destroyAllWindows() | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment