Last active
February 8, 2025 18:36
-
-
Save Marc-B-Reynolds/450cec7f3646314c88a353bde50273d1 to your computer and use it in GitHub Desktop.
Using sollya to "repeat" Cecil Hastings' 1955 approximations for atan. Works as an example of using a 'seed' approximation & using sollya to refine.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// Repeating Cecil Hastings atan approximations from 1955 using Sollya. | |
// Other than "amusement factor" these use Hasting's approximations | |
// to "seed" the sollya calls to 'fpminimax'. | |
// | |
// Current world usage could include using an initial approximation | |
// from some multiprecision or computer algebra system and then | |
// Sollya to refine the constants to hardware sized (half,single,double,etc) | |
// | |
// Additionally the wide choice of the range would cause Sollya to fail | |
// to converge if we didn't feed it an initial guess. | |
F = atan(x); | |
R = [-1;1]; | |
T = floating; | |
E = absolute; | |
// sheet 8: | |
// H3 is the Hastings approximation | |
// L3 builds a list of points | |
// | |
// this a call that would fail to converge: | |
// P3 = fpminimax(F, [|1,3,5|], [|24...|], R,T,E); | |
H3 = horner(.995354*x -.288679*x^3+.079331*x^5); | |
L3 = dirtyfindzeros(F-H3, R); | |
P3 = fpminimax(F, [|1,3,5|], [|24...|], L3, E, default, default, H3); | |
write("hastings "); H3; | |
write("sollya "); P3; | |
print("norm = ", accurateinfnorm(F-P3, R, 23)); | |
print("hastings = ", accurateinfnorm(F-H3, R, 23), "\n"); | |
// sheet 9: | |
H4 = horner(.9992150*x - .3211819*x^3 + 0.1462766*x^5 - 0.0389929*x^7); | |
L4 = dirtyfindzeros(F-H4, R); | |
P4 = fpminimax(F, [|1,3,5,7|], [|24...|], L4, E, default, default, H4); | |
write("hastings "); H4; | |
write("sollya "); P4; | |
print("norm = ", accurateinfnorm(F-P4, R, 23)); | |
print("hastings = ", accurateinfnorm(F-H4, R, 23), "\n"); | |
// sheet 10: | |
H5 = horner(.9998660*x -.3302995*x^3 + .1801410*x^5 - .0851330*x^7 + .0208351*x^9); | |
L5 = dirtyfindzeros(F-H5, R); | |
P5 = fpminimax(F, [|1,3,5,7,9|], [|24...|], L5, E, default, default, H5); | |
write("hastings "); H5; | |
write("sollya "); P5; | |
print("norm = ", accurateinfnorm(F-P5, R, 23)); | |
print("hastings = ", accurateinfnorm(F-H5, R, 23), "\n"); |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
hastings x * (0.995354 + x^2 * (-0.288679 + x^2 * 7.9331e-2)) | |
sollya x * (0.995353996753692626953125 + x^2 * (-0.2886789739131927490234375 + x^2 * 7.9330973327159881591796875e-2)) | |
norm = 6.09312788583338260650634765625e-4 | |
hastings = 6.09312322922050952911376953125e-4 | |
hastings x * (0.999215 + x^2 * (-0.3211819 + x^2 * (0.1462766 + x^2 * (-3.89929e-2)))) | |
sollya x * (0.99921500682830810546875 + x^2 * (-0.321181952953338623046875 + x^2 * (0.14627669751644134521484375 + x^2 * (-3.89929525554180145263671875e-2)))) | |
norm = 8.1499878433533012866973876953125e-5 | |
hastings = 8.1499922089278697967529296875e-5 | |
hastings x * (0.999866 + x^2 * (-0.3302995 + x^2 * (0.180141 + x^2 * (-8.5133e-2 + x^2 * 2.08351e-2)))) | |
sollya x * (0.999866008758544921875 + x^2 * (-0.3302995860576629638671875 + x^2 * (0.18014125525951385498046875 + x^2 * (-8.5133291780948638916015625e-2 + x^2 * 2.0835213363170623779296875e-2)))) | |
norm = 1.149161835201084613800048828125e-5 | |
hastings = 1.1491427358123473823070526123046875e-5 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment