Last active
August 29, 2015 13:56
-
-
Save MarcCote/9053599 to your computer and use it in GitHub Desktop.
Gist showing a potential memory leak when using the 'out' parameter of PyArray_CumSum of the numpy's C-api.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import resource | |
import numpy as np | |
from scipy import weave | |
x = np.ones(1e6, dtype=np.float32) | |
# There is no memory leak, when we let PyArray_CumSum creates the output array, i.e. when out=NULL. | |
code_good = r""" | |
npy_intp shape[1] = { PyArray_SIZE(x_array) }; | |
int dtype = PyArray_DTYPE(x_array)->type_num; | |
PyArrayObject* res = (PyArrayObject*)PyArray_CumSum(x_array, NPY_MAXDIMS, dtype, NULL); | |
return_val = (PyObject*)res; | |
Py_XDECREF(res); | |
""" | |
print "RAM: {0:.2}Gb".format(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024.**2) | |
for i in xrange(100): | |
weave.inline(code_good, ['x']) | |
print "RAM: {0:.2}Gb".format(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024.**2) | |
res = weave.inline(code_good, ['x']) | |
print np.all(res == np.cumsum(x)) | |
# There is memory leak, when we first create an array let with PyArray_SimpleNew and let | |
# PyArray_CumSum fills it, i.e. when out=res. | |
code_leak = r""" | |
npy_intp shape[1] = { PyArray_SIZE(x_array) }; | |
int dtype = PyArray_DTYPE(x_array)->type_num; | |
PyArrayObject* res = (PyArrayObject*) PyArray_SimpleNew(1, shape, dtype); | |
PyArray_CumSum(x_array, NPY_MAXDIMS, dtype, res); | |
return_val = (PyObject*)res; | |
Py_XDECREF(res); | |
""" | |
print "RAM: {0:.2}Gb".format(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024.**2) | |
for i in xrange(100): | |
weave.inline(code_leak, ['x']) | |
print "RAM: {0:.2}Gb".format(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024.**2) | |
res = weave.inline(code_leak, ['x']) | |
print np.all(res == np.cumsum(x)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment