Created
April 12, 2020 13:04
-
-
Save MarcoForte/e1518c1d927057ea20ada841ac63642c to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def group_weight(module, lr_encoder, lr_decoder, WD): | |
group_decay = { 'encoder': [], 'decoder':[]} | |
group_bias = { 'encoder': [], 'decoder':[]} | |
group_GN = { 'encoder': [], 'decoder':[]} | |
for name, m in module.named_modules(): | |
# if hasattr(m, 'requires_grad'): | |
# if m.requires_grad: | |
# continue | |
part = 'decoder' | |
if('encoder' in name): | |
part = 'encoder' | |
if isinstance(m, nn.Linear): | |
group_decay[part].append(m.weight) | |
if m.bias is not None: | |
group_bias[part].append(m.bias) | |
elif isinstance(m, nn.Conv2d) and m.weight.requires_grad: | |
group_decay[part].append(m.weight) | |
if m.bias is not None: | |
group_bias[part].append(m.bias) | |
elif isinstance(m, layers_WS.Conv2d) and m.weight.requires_grad: | |
group_decay[part].append(m.weight) | |
if m.bias is not None: | |
group_bias[part].append(m.bias) | |
elif isinstance(m, nn.GroupNorm): | |
if m.weight is not None: | |
group_GN[part].append(m.weight) | |
if m.bias is not None: | |
group_GN[part].append(m.bias) | |
print(len(list(module.parameters())), len(group_decay['encoder']) + len(group_bias['encoder']) + len(group_GN['encoder']) + len(group_decay['decoder']) + len(group_bias['decoder']) + len(group_GN['decoder']) , len(list(module.modules()))) | |
# assert len(list(module.parameters())) == len(group_decay) + len(group_bias) + len(group_GN) | |
groups = [dict(params=group_decay['decoder'], lr =lr_decoder, weight_decay=WD), dict(params=group_bias['decoder'], lr=2*lr_decoder, weight_decay=0.0), dict(params=group_GN['decoder'], lr=lr_decoder, weight_decay=1e-5), | |
dict(params=group_decay['encoder'], lr=lr_encoder, weight_decay=WD), dict(params=group_bias['encoder'], lr=2*lr_encoder, weight_decay=0.0), dict(params=group_GN['encoder'], lr=lr_encoder, weight_decay=1e-5)] | |
# groups= [dict(params=module.decoder.conv_pred.parameters(), lr=lr, weight_decay=0.0)] | |
return groups |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment