Skip to content

Instantly share code, notes, and snippets.

@MarkPryceMaherMSFT
Created September 27, 2024 20:51
Show Gist options
  • Save MarkPryceMaherMSFT/ccdca6206b71f8e2b63f49794c4b2bd6 to your computer and use it in GitHub Desktop.
Save MarkPryceMaherMSFT/ccdca6206b71f8e2b63f49794c4b2bd6 to your computer and use it in GitHub Desktop.
Test how long it tasks to refresh data in the SQL Endpoint
import pandas as pd
import struct
import sqlalchemy
import pyodbc
import notebookutils
import sempy.fabric as fabric
import time
from pyspark.sql import functions as fn
from datetime import datetime
def create_engine(connection_string : str):
token = notebookutils.credentials.getToken('https://analysis.windows.net/powerbi/api').encode("UTF-16-LE")
token_struct = struct.pack(f'<I{len(token)}s', len(token), token)
SQL_COPT_SS_ACCESS_TOKEN = 1256
return sqlalchemy.create_engine("mssql+pyodbc://", creator=lambda: pyodbc.connect(connection_string, attrs_before={SQL_COPT_SS_ACCESS_TOKEN: token_struct}))
tenant_id=spark.conf.get("trident.tenant.id")
workspace_id=spark.conf.get("trident.workspace.id")
lakehouse_id=spark.conf.get("trident.lakehouse.id")
lakehouse_name=spark.conf.get("trident.lakehouse.name")
sql_endpoint= fabric.FabricRestClient().get(f"/v1/workspaces/{workspace_id}/lakehouses/{lakehouse_id}").json()['properties']['sqlEndpointProperties']['connectionString']
connection_string = f"Driver={{ODBC Driver 18 for SQL Server}};Server={sql_endpoint},1433;Encrypt=Yes;TrustServerCertificate=No"
print (f"connection_string={connection_string}")
engine = create_engine(connection_string)
#df = pd.read_sql_query("SELECT DB_NAME() AS [Current Database]; ", engine)
#display(df)
lh = "demolake"
tablename = "part2"
schema = "dbo"
sparkrc = 0
sqlrc= 1
i=1
now = datetime.now()
print("now =", now)
while sparkrc != sqlrc :
print(i) # Print the current value of i
i += 1
try:
dfs = pd.read_sql_query("SELECT DB_NAME() AS [Current Database]; ", engine)
sparkquery = f"select count(*) as row_count from {lh}.{tablename}"
sqlquery = f"select count(*) as row_count from {schema}.{tablename}"
df = spark.sql(sparkquery)
dfx = pd.read_sql_query(sqlquery, engine)
df_pandas = df.toPandas()
sparkrc = df_pandas['row_count'].values[0]
sqlrc = dfx['row_count'].values[0]
print(f"Spark table count {sparkrc} SQL count {sqlrc}")
except Exception as e:
# handling any other exceptions
print("An error occurred:", str(e))
time.sleep(5)
now = datetime.now()
print("now =", now)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment