Last active
August 16, 2017 07:26
-
-
Save MartinMacharia/68c1f56985526429347410f8a73e8c6b to your computer and use it in GitHub Desktop.
Mixed models and lme4
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Model selection codes | |
Model 1 | |
Initial model specification | |
library(lme4) | |
Model1=lmer(yield.per.ha~n.per.ha*rain*soilclass+manure+seed+n.squared+(1|year)+(1|hhid)+(1|aezsmall)+(1|aez),data=isfm) | |
Model selection using fitLMER.fnc | |
library(LMERConvenienceFunctions) | |
optimum1=fitLMER.fnc(Model1,backfit.on="F",item=F,alpha=0.05,if.warn.not.add=TRUE,llrt=T,prune.ranefs=TRUE,p.value="upper",t.threshold=2,set.REML.FALSE=TRUE,reset.REML.TRUE=TRUE) | |
optimum1 | |
Model criticism plots | |
mcp.fnc(optimum1) | |
library(languageR) | |
Computation of p-values | |
Using MCMC | |
pvals.fnc(optimum1) | |
Using log likelihood ratio test | |
Model 1 | |
p.values.lmer<- function(x) { | |
summary.model <- summary(x) | |
data.lmer <- data.frame(model.matrix(x)) | |
names(data.lmer) <- names(fixef(x)) | |
names(data.lmer) <- gsub(pattern=":", x=names(data.lmer), replacement=".", fixed=T) | |
names(data.lmer) <- ifelse(names(data.lmer)=="(Intercept)", "Intercept", names(data.lmer)) | |
string.call <- strsplit(x=as.character(x@call), split=" + (", fixed=T) | |
var.dep <- unlist(strsplit(x=unlist(string.call)[2], " ~ ", fixed=T))[1] | |
vars.fixef <- names(data.lmer) | |
formula.ranef <- paste("+ (", string.call[[2]][-1], sep="") | |
formula.ranef <- paste(formula.ranef, collapse=" ") | |
formula.full <- as.formula(paste(var.dep, "~ -1 +", paste(vars.fixef, collapse=" + "), | |
formula.ranef)) | |
data.ranef <- data.frame(x@frame[, | |
which(names(x@frame) %in% names(ranef(x)))]) | |
names(data.ranef) <- names(ranef(x)) | |
data.lmer <- data.frame(x@frame[, 1], data.lmer, data.ranef) | |
names(data.lmer)[1] <- var.dep | |
out.full <- lmer(formula.full, data=data.lmer, REML=F) | |
p.value.LRT <- vector(length=length(vars.fixef)) | |
for(i in 1:length(vars.fixef)) { | |
formula.reduced <- as.formula(paste(var.dep, "~ -1 +", paste(vars.fixef[-i], | |
collapse=" + "), formula.ranef)) | |
out.reduced <- lmer(formula.reduced, data=data.lmer, REML=F) | |
print(paste("Reduced by:", vars.fixef[i])) | |
print(out.LRT <- data.frame(anova(out.full, out.reduced))) | |
p.value.LRT[i] <- round(out.LRT[2, 7], 3) | |
} | |
summary.model@coefs <- cbind(summary.model@coefs, p.value.LRT) | |
summary.model@methTitle <- c("\n", summary.model@methTitle, | |
"\n(p-values from comparing nested models fit by maximum likelihood)") | |
print(summary.model) | |
} | |
library(lme4) | |
lmer.final.p<-lmer(yield.per.ha~n.per.ha+rain+soilclass+manure+seed+n.squared+n.per.ha:rain+rain:soilclass+(1|year)+(1|hhid)+(1|aezsmall)+(1|aez),data=isfm) | |
p.values.lmer(lmer.final.p) | |
Model 2 | |
Initial model specification | |
library(lme4) | |
Model2=lmer(yield.per.ha~p.per.ha*rain*soilclass+manure+seed+p.squared+(1|year)+(1|hhid)+(1|aezsmall)+(1|aez),data=isfm) | |
Model2 | |
library(LMERConvenienceFunctions) | |
Model selection using fitLMER.fnc | |
optimum2=fitLMER.fnc(Model2,backfit.on="F",item=F,alpha=0.05,if.warn.not.add=TRUE,llrt=T,prune.ranefs=TRUE,p.value="upper",t.threshold=2,set.REML.FALSE=TRUE,reset.REML.TRUE=TRUE) | |
optimum2 | |
mcp.fnc(optimum2) | |
library(languageR) | |
Computation of p-values | |
Using MCMC | |
pvals.fnc(optimum2) | |
Using log likelihood ratios | |
p.values.lmer<- function(x) { | |
summary.model <- summary(x) | |
data.lmer <- data.frame(model.matrix(x)) | |
names(data.lmer) <- names(fixef(x)) | |
names(data.lmer) <- gsub(pattern=":", x=names(data.lmer), replacement=".", fixed=T) | |
names(data.lmer) <- ifelse(names(data.lmer)=="(Intercept)", "Intercept", names(data.lmer)) | |
string.call <- strsplit(x=as.character(x@call), split=" + (", fixed=T) | |
var.dep <- unlist(strsplit(x=unlist(string.call)[2], " ~ ", fixed=T))[1] | |
vars.fixef <- names(data.lmer) | |
formula.ranef <- paste("+ (", string.call[[2]][-1], sep="") | |
formula.ranef <- paste(formula.ranef, collapse=" ") | |
formula.full <- as.formula(paste(var.dep, "~ -1 +", paste(vars.fixef, collapse=" + "), | |
formula.ranef)) | |
data.ranef <- data.frame(x@frame[, | |
which(names(x@frame) %in% names(ranef(x)))]) | |
names(data.ranef) <- names(ranef(x)) | |
data.lmer <- data.frame(x@frame[, 1], data.lmer, data.ranef) | |
names(data.lmer)[1] <- var.dep | |
out.full <- lmer(formula.full, data=data.lmer, REML=F) | |
p.value.LRT <- vector(length=length(vars.fixef)) | |
for(i in 1:length(vars.fixef)) { | |
formula.reduced <- as.formula(paste(var.dep, "~ -1 +", paste(vars.fixef[-i], | |
collapse=" + "), formula.ranef)) | |
out.reduced <- lmer(formula.reduced, data=data.lmer, REML=F) | |
print(paste("Reduced by:", vars.fixef[i])) | |
print(out.LRT <- data.frame(anova(out.full, out.reduced))) | |
p.value.LRT[i] <- round(out.LRT[2, 7], 3) | |
} | |
summary.model@coefs <- cbind(summary.model@coefs, p.value.LRT) | |
summary.model@methTitle <- c("\n", summary.model@methTitle, | |
"\n(p-values from comparing nested models fit by maximum likelihood)") | |
print(summary.model) | |
} | |
library(lme4) | |
lmer.final.p<-lmer(yield.per.ha~p.per.ha+rain+soilclass+manure+seed+p.per.ha:rain+p.per.ha:soilclass+rain:soilclass+p.per.ha:rain:soilclass+(1|year)+(1|hhid)+(1|aezsmall)+(1|aez),data=isfm) | |
p.values.lmer(lmer.final.p) | |
Model 3 | |
Initial model specification | |
library(lme4) | |
Model3=lmer(yield.per.ha~k.per.ha*rain*soilclass+manure+seed+k.squared+(1|year)+(1|hhid)+(1|aezsmall)+(1|aez),data=isfm) | |
Model3 | |
Model selection fitLMER.fnc | |
library(LMERConvenienceFunctions) | |
optimum3=fitLMER.fnc(Model3,backfit.on="F",item=F,alpha=0.05,if.warn.not.add=TRUE,llrt=FALSE,prune.ranefs=TRUE,p.value="upper",t.threshold=2,set.REML.FALSE=TRUE,reset.REML.TRUE=TRUE) | |
optimum3 | |
library(languageR) | |
Computation of p-values | |
Using MCMC | |
pvals.fnc(optimum3) | |
Using log likelihood ratios | |
p.values.lmer<- function(x) { | |
summary.model <- summary(x) | |
data.lmer <- data.frame(model.matrix(x)) | |
names(data.lmer) <- names(fixef(x)) | |
names(data.lmer) <- gsub(pattern=":", x=names(data.lmer), replacement=".", fixed=T) | |
names(data.lmer) <- ifelse(names(data.lmer)=="(Intercept)", "Intercept", names(data.lmer)) | |
string.call <- strsplit(x=as.character(x@call), split=" + (", fixed=T) | |
var.dep <- unlist(strsplit(x=unlist(string.call)[2], " ~ ", fixed=T))[1] | |
vars.fixef <- names(data.lmer) | |
formula.ranef <- paste("+ (", string.call[[2]][-1], sep="") | |
formula.ranef <- paste(formula.ranef, collapse=" ") | |
formula.full <- as.formula(paste(var.dep, "~ -1 +", paste(vars.fixef, collapse=" + "), | |
formula.ranef)) | |
data.ranef <- data.frame(x@frame[, | |
which(names(x@frame) %in% names(ranef(x)))]) | |
names(data.ranef) <- names(ranef(x)) | |
data.lmer <- data.frame(x@frame[, 1], data.lmer, data.ranef) | |
names(data.lmer)[1] <- var.dep | |
out.full <- lmer(formula.full, data=data.lmer, REML=F) | |
p.value.LRT <- vector(length=length(vars.fixef)) | |
for(i in 1:length(vars.fixef)) { | |
formula.reduced <- as.formula(paste(var.dep, "~ -1 +", paste(vars.fixef[-i], | |
collapse=" + "), formula.ranef)) | |
out.reduced <- lmer(formula.reduced, data=data.lmer, REML=F) | |
print(paste("Reduced by:", vars.fixef[i])) | |
print(out.LRT <- data.frame(anova(out.full, out.reduced))) | |
p.value.LRT[i] <- round(out.LRT[2, 7], 3) | |
} | |
summary.model@coefs <- cbind(summary.model@coefs, p.value.LRT) | |
summary.model@methTitle <- c("\n", summary.model@methTitle, | |
"\n(p-values from comparing nested models fit by maximum likelihood)") | |
print(summary.model) | |
} | |
library(lme4) | |
lmer.final.p<-lmer(yield.per.ha~k.per.ha+rain+manure+seed+k.squared+k.per.ha:rain+(1|year)+(1|hhid)+(1|aezsmall)+(1|aez),data=isfm) | |
p.values.lmer(lmer.final.p) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment