Last active
December 23, 2015 10:50
-
-
Save MartinMacharia/c6cc27b929488c11754b to your computer and use it in GitHub Desktop.
Kenya Legacy analysis
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Kenya <- read.csv("C:/Users/machariam/Desktop/Spatial_layers/Kenya.csv", na.strings=c("NA")) | |
names(Kenya) | |
#create a new dataset with less variable of interst | |
str(Kenya) | |
Kenya_1=Kenya[ , c("Country","District","Center","Site","Longitudes","Latitudes","Elevation","Year","Crop_1","Variety_1", | |
"Crop_2","Crop_2_Variety","Crop_3" ,"Crop_3_Variety","PlantMon","PrevCrop","AppliMethod", | |
"Manure","Inorganic", "Crop_Fallow","pH_water","PH_Other","Soil_type","Nrate","Prate","Krate", | |
"Srate","Znrate","Curate","MgRate","Brate","Other_Nutrients","FYM","Compost","Grain_Yield", | |
"Stover_yield", "Additional_comments")] | |
summary(Kenya_1) | |
str(Kenya_1) | |
#Subset the data by district | |
Nakuru=Kenya_1[Kenya_1$District== "Nakuru", ] | |
summary(Nakuru) | |
#Printing the data in excel | |
write.csv(Nakuru, "/Users/machariam/Desktop/Spatial_layers/Kenya/Nakuru.csv") | |
#Subset Nakuru data into sites | |
OlNgarua = Nakuru[Nakuru$Center=="OlNgarua",] | |
summary(OlNgarua) | |
Grain_Yield=as.numeric(Grain_Yield) | |
#write.csv(OlNgarua, "/Users/machariam/Desktop/Spatial_layers/Kenya/OlNgarua.csv") | |
#OlNgarua site/center has the same treatment structure of 5 N levels across seasons and years | |
# Are season and year effects significant? | |
plot(OlNgarua$Nrate,OlNgarua$Grain_Yield) | |
#Too much variability within an N level, hence investigate by year across crops | |
OlNgarua_year=OlNgarua[OlNgarua$Year=="1990",] | |
summary(OlNgarua_year) | |
plot(OlNgarua_year$Nrate,OlNgarua_year$Grain_Yield) | |
# Per single crop | |
OlNgarua_maize=OlNgarua[OlNgarua$Crop_1=="Maize",] | |
plot(OlNgarua_maize$Nrate,OlNgarua_maize$Grain_Yield) | |
# subset by crop and year | |
OlNgarua_maize_1990=subset(OlNgarua, Crop_1=="Maize" & Year=="1990" & PlantMon=="S1M1" & Variety_1 == "H625" & Prate==50 ) | |
OlNgarua_maize_1990 | |
write.csv(OlNgarua_maize_1990, "/Users/machariam/Desktop/Spatial_layers/Kenya/OlNgarua_maize_1990.csv") | |
plot(OlNgarua_maize_1990$Nrate,OlNgarua_maize_1990$Grain_Yield) | |
#Overlying the scatter plots genearted by country and crop and nutrient basis | |
#add the argument type = "l" to get a line | |
plot=plot(OlNgarua_maize_1990$Nrate,OlNgarua_maize_1990$Grain_Yield, xlim=c(0,100), ylim=c(1000,2000) | |
,xlab="Nitrogen Rate", ylab="Yield(t/ha)", pch= 19,col="Red",cex=0.9, cex.lab=1.2) | |
Grain_Yield_num=as.numeric(OlNgarua_maize_1990$Grain_Yield) | |
str(OlNgarua_maize_1990$Grain_Yield) | |
str(Grain_Yield_num) | |
#Adding a straight line | |
plot1=lm(Grain_Yield_num ~ OlNgarua_maize_1990$Nrate) | |
abline(plot1, col = 'red') | |
#Adding a smooth line | |
smoothplot1=lowess(Grain_Yield_num ~ OlNgarua_maize_1990$Nrate) | |
lines(smoothplot1, col = 'red') | |
library(locfit) | |
smoothplot1=locfit(Grain_Yield_num ~lp(OlNgarua_maize_1990$Nrate, nn = 0.80, deg = 1)) | |
lines(smoothplot1, col="red", lwd=1.4) | |
#nn=specifies smoothness of parameter | |
#deg=specifies the degree (1,2...) of the polynomial | |
#overlying the scatter plots | |
str(OlNgarua) | |
par(mfrow=c(2,2)) | |
Dataplot1=subset(OlNgarua, Crop_1=="Maize" & Year=="1990" & PlantMon=="S1M1" | |
& Variety_1 == "H625" & Prate==0) | |
Dataplot1 | |
plot1=plot(Dataplot1$Nrate,Dataplot1$Grain_Yield) | |
Dataplot2=subset(OlNgarua, Crop_1=="Maize" & Year=="1990" & | |
PlantMon=="S1M1" & Variety_1 == "H625" & Prate==25 ) | |
Dataplot2 | |
plot2=plot(Dataplot2$Nrate,Dataplot2$Grain_Yield) | |
Dataplot3=subset(OlNgarua, Crop_1=="Maize" & Year=="1990" & | |
PlantMon=="S1M1" & Variety_1 == "H625" & Prate==50) | |
Dataplot3 | |
plot3=plot(Dataplot3$Nrate,Dataplot3$Grain_Yield,xlim=c(0,100), ylim=c(1000,2000)) | |
Dataplot4=subset(OlNgarua, Crop_1=="Maize" & Year=="1990" & | |
PlantMon=="S1M1" & Variety_1 == "H625" & Prate==75) | |
Dataplot4 | |
plot4=plot(Dataplot4$Nrate,Dataplot4$Grain_Yield, xlim=c(0,100), ylim=c(1000,2000)) | |
#combining the above individual scatter plots | |
plot1=plot(Dataplot1$Nrate,Dataplot1$Grain_Yield,pch= 19,xlim=c(0,85), | |
#axis(1, at = seq(0, 85, by = 10), las=2), | |
ylim=c(1000,1600), xlab="N Rate (Kg/ha)" | |
,ylab="Grain yield (t/ha)",main="Maize yield response to N & P fertlizers" | |
,cex.main=0.9,cex.axis=0.7, abline(v=25,lty=5)) | |
plot2=points(Dataplot2$Nrate,Dataplot2$Grain_Yield,pch= 19, col="red") | |
plot3=points(Dataplot3$Nrate,Dataplot3$Grain_Yield, pch= 19,col="purple") | |
plot4=points(Dataplot4$Nrate,Dataplot4$Grain_Yield, pch= 19,col="Orange") | |
# Fitting lowess curves on the above points and draving lines | |
#0P | |
smoothplot2=locfit(Dataplot1$Grain_Yield ~lp(Dataplot1$Nrate, nn = 0.80, deg = 1)) | |
lines(smoothplot2,lwd=1.7) | |
#25P | |
smoothplot3=locfit(Dataplot2$Grain_Yield ~lp(Dataplot2$Nrate, nn = 0.80, deg = 1)) | |
lines(smoothplot3, col="red", lwd=1.7) | |
#50P | |
smoothplot4=locfit(Dataplot3$Grain_Yield ~lp(Dataplot3$Nrate, nn = 0.80, deg = 1)) | |
lines(smoothplot4, col="purple", lwd=1.7) | |
#75P | |
smoothplot5=locfit(Dataplot2$Grain_Yield ~lp(Dataplot2$Nrate, nn = 0.80, deg = 2)) | |
lines(smoothplot5, col="Orange", lwd=1.7) | |
#Adding legends | |
legend(x=40,y=1200, c("0P with 0,25,50,75N","25P with 0,25,50,75N", | |
"50P,with 0,25,50,75N","75P with 0,25,50,75N"), | |
text.font=0.5,cex=0.8, | |
pch=c(19,19,19,19), lty=c(1,1,1,1), | |
col=c("black","red","purple","orange")) | |
#Pch- plot symbols as in scatter plot | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment