-
-
Save MartinThoma/2ba603e8a40faa9286dd752323da4566 to your computer and use it in GitHub Desktop.
OPTICS clustering in Python
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Copyright (c) 2012, Ryan Gomba | |
# All rights reserved. | |
# | |
# Redistribution and use in source and binary forms, with or without | |
# modification, are permitted provided that the following conditions are met: | |
# | |
# 1. Redistributions of source code must retain the above copyright notice, this | |
# list of conditions and the following disclaimer. | |
# 2. Redistributions in binary form must reproduce the above copyright notice, | |
# this list of conditions and the following disclaimer in the documentation | |
# and/or other materials provided with the distribution. | |
# | |
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND | |
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR | |
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | |
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | |
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
# | |
# The views and conclusions contained in the software and documentation are those | |
# of the authors and should not be interpreted as representing official policies, | |
# either expressed or implied, of the FreeBSD Project. | |
import math | |
import json | |
################################################################################ | |
# POINT | |
################################################################################ | |
class Point: | |
def __init__(self, latitude, longitude): | |
self.latitude = latitude | |
self.longitude = longitude | |
self.cd = None # core distance | |
self.rd = None # reachability distance | |
self.processed = False # has this point been processed? | |
# -------------------------------------------------------------------------- | |
# calculate the distance between any two points on earth | |
# -------------------------------------------------------------------------- | |
def distance(self, point): | |
# convert coordinates to radians | |
p1_lat, p1_lon, p2_lat, p2_lon = [math.radians(c) for c in | |
self.latitude, self.longitude, point.latitude, point.longitude] | |
numerator = math.sqrt( | |
math.pow(math.cos(p2_lat) * math.sin(p2_lon - p1_lon), 2) + | |
math.pow( | |
math.cos(p1_lat) * math.sin(p2_lat) - | |
math.sin(p1_lat) * math.cos(p2_lat) * | |
math.cos(p2_lon - p1_lon), 2)) | |
denominator = ( | |
math.sin(p1_lat) * math.sin(p2_lat) + | |
math.cos(p1_lat) * math.cos(p2_lat) * | |
math.cos(p2_lon - p1_lon)) | |
# convert distance from radians to meters | |
# note: earth's radius ~ 6372800 meters | |
return math.atan2(numerator, denominator) * 6372800 | |
# -------------------------------------------------------------------------- | |
# point as GeoJSON | |
# -------------------------------------------------------------------------- | |
def to_geo_json_dict(self, properties=None): | |
return { | |
'type': 'Feature', | |
'geometry': { | |
'type': 'Point', | |
'coordinates': [ | |
self.longitude, | |
self.latitude, | |
] | |
}, | |
'properties': properties, | |
} | |
def __repr__(self): | |
return '(%f, %f)' % (self.latitude, self.longitude) | |
################################################################################ | |
# CLUSTER | |
################################################################################ | |
class Cluster: | |
def __init__(self, points): | |
self.points = points | |
# -------------------------------------------------------------------------- | |
# calculate the centroid for the cluster | |
# -------------------------------------------------------------------------- | |
def centroid(self): | |
return Point(sum([p.latitude for p in self.points])/len(self.points), | |
sum([p.longitude for p in self.points])/len(self.points)) | |
# -------------------------------------------------------------------------- | |
# calculate the region (centroid, bounding radius) for the cluster | |
# -------------------------------------------------------------------------- | |
def region(self): | |
centroid = self.centroid() | |
radius = reduce(lambda r, p: max(r, p.distance(centroid)), self.points) | |
return centroid, radius | |
# -------------------------------------------------------------------------- | |
# cluster as GeoJSON | |
# -------------------------------------------------------------------------- | |
def to_geo_json_dict(self, user_properties=None): | |
center, radius = self.region() | |
properties = { 'radius': radius } | |
if user_properties: properties.update(user_properties) | |
return { | |
'type': 'Feature', | |
'geometry': { | |
'type': 'Point', | |
'coordinates': [ | |
center.longitude, | |
center.latitude, | |
] | |
}, | |
'properties': properties, | |
} | |
################################################################################ | |
# OPTICS | |
################################################################################ | |
class Optics: | |
def __init__(self, points, max_radius, min_cluster_size): | |
self.points = points | |
self.max_radius = max_radius # maximum radius to consider | |
self.min_cluster_size = min_cluster_size # minimum points in cluster | |
# -------------------------------------------------------------------------- | |
# get ready for a clustering run | |
# -------------------------------------------------------------------------- | |
def _setup(self): | |
for p in self.points: | |
p.rd = None | |
p.processed = False | |
self.unprocessed = [p for p in self.points] | |
self.ordered = [] | |
# -------------------------------------------------------------------------- | |
# distance from a point to its nth neighbor (n = min_cluser_size) | |
# -------------------------------------------------------------------------- | |
def _core_distance(self, point, neighbors): | |
if point.cd is not None: return point.cd | |
if len(neighbors) >= self.min_cluster_size - 1: | |
sorted_neighbors = sorted([n.distance(point) for n in neighbors]) | |
point.cd = sorted_neighbors[self.min_cluster_size - 2] | |
return point.cd | |
# -------------------------------------------------------------------------- | |
# neighbors for a point within max_radius | |
# -------------------------------------------------------------------------- | |
def _neighbors(self, point): | |
return [p for p in self.points if p is not point and | |
p.distance(point) <= self.max_radius] | |
# -------------------------------------------------------------------------- | |
# mark a point as processed | |
# -------------------------------------------------------------------------- | |
def _processed(self, point): | |
point.processed = True | |
self.unprocessed.remove(point) | |
self.ordered.append(point) | |
# -------------------------------------------------------------------------- | |
# update seeds if a smaller reachability distance is found | |
# -------------------------------------------------------------------------- | |
def _update(self, neighbors, point, seeds): | |
# for each of point's unprocessed neighbors n... | |
for n in [n for n in neighbors if not n.processed]: | |
# find new reachability distance new_rd | |
# if rd is null, keep new_rd and add n to the seed list | |
# otherwise if new_rd < old rd, update rd | |
new_rd = max(point.cd, point.distance(n)) | |
if n.rd is None: | |
n.rd = new_rd | |
seeds.append(n) | |
elif new_rd < n.rd: | |
n.rd = new_rd | |
# -------------------------------------------------------------------------- | |
# run the OPTICS algorithm | |
# -------------------------------------------------------------------------- | |
def run(self): | |
self._setup() | |
# for each unprocessed point (p)... | |
while self.unprocessed: | |
point = self.unprocessed[0] | |
# mark p as processed | |
# find p's neighbors | |
self._processed(point) | |
point_neighbors = self._neighbors(point) | |
# if p has a core_distance, i.e has min_cluster_size - 1 neighbors | |
if self._core_distance(point, point_neighbors) is not None: | |
# update reachability_distance for each unprocessed neighbor | |
seeds = [] | |
self._update(point_neighbors, point, seeds) | |
# as long as we have unprocessed neighbors... | |
while(seeds): | |
# find the neighbor n with smallest reachability distance | |
seeds.sort(key=lambda n: n.rd) | |
n = seeds.pop(0) | |
# mark n as processed | |
# find n's neighbors | |
self._processed(n) | |
n_neighbors = self._neighbors(n) | |
# if p has a core_distance... | |
if self._core_distance(n, n_neighbors) is not None: | |
# update reachability_distance for each of n's neighbors | |
self._update(n_neighbors, n, seeds) | |
# when all points have been processed | |
# return the ordered list | |
return self.ordered | |
# -------------------------------------------------------------------------- | |
def cluster(self, cluster_threshold): | |
clusters = [] | |
separators = [] | |
for i in range(len(self.ordered)): | |
this_i = i | |
next_i = i + 1 | |
this_p = self.ordered[i] | |
this_rd = this_p.rd if this_p.rd else float('infinity') | |
# use an upper limit to separate the clusters | |
if this_rd > cluster_threshold: | |
separators.append(this_i) | |
separators.append(len(self.ordered)) | |
for i in range(len(separators) - 1): | |
start = separators[i] | |
end = separators[i + 1] | |
if end - start >= self.min_cluster_size: | |
clusters.append(Cluster(self.ordered[start:end])) | |
return clusters | |
# LOAD SOME POINTS | |
points = [ | |
Point(37.769006, -122.429299), # cluster #1 | |
Point(37.769044, -122.429130), # cluster #1 | |
Point(37.768775, -122.429092), # cluster #1 | |
Point(37.776299, -122.424249), # cluster #2 | |
Point(37.776265, -122.424657), # cluster #2 | |
] | |
optics = Optics(points, 100, 2) # 100m radius for neighbor consideration, cluster size >= 2 points | |
optics.run() # run the algorithm | |
clusters = optics.cluster(50) # 50m threshold for clustering | |
for cluster in clusters: | |
print cluster.points |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment