Last active
November 18, 2024 15:11
-
-
Save MartinWeiss12/4f13705d8d758b229eea076eb297f7a4 to your computer and use it in GitHub Desktop.
Grad-CAM
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def grad_cam(model, threshold, image_id, img_path, lesion_type, image_width, image_height, device): | |
img = cv2.imread(img_path) | |
img = cv2.resize(img, (image_width, image_height)) | |
img_original = cv2.resize(img.copy(), (450, 450)) | |
img = img / 255.0 | |
img = img - np.array([0.5, 0.5, 0.5]) | |
img = img / np.array([0.5, 0.5, 0.5]) | |
img = np.transpose(img, (2, 0, 1)) | |
img = torch.from_numpy(img).unsqueeze(0).float().to(device) | |
model.eval() | |
features = [] | |
gradients = [] | |
def forward_hook(module, input, output): | |
features.append(output.detach()) | |
def backward_hook(module, grad_in, grad_out): | |
gradients.append(grad_out[0].detach()) | |
last_conv_layer = None | |
for child in model.modules(): | |
if isinstance(child, nn.Conv2d): | |
last_conv_layer = child | |
if last_conv_layer is not None: | |
handle_forward = last_conv_layer.register_forward_hook(forward_hook) | |
handle_backward = last_conv_layer.register_full_backward_hook(backward_hook) | |
logits = model(img) | |
probs = F.softmax(logits, dim=1) | |
predicted_class = probs.argmax().item() | |
model.zero_grad() | |
class_score = logits[0, predicted_class] | |
class_score.backward() | |
grad = gradients[0] | |
feature_maps = features[0] | |
handle_forward.remove() | |
handle_backward.remove() | |
weights = torch.mean(grad, dim=(2, 3)) | |
weights = weights.view(-1, 1, 1) | |
cam = torch.sum(weights * feature_maps[0], dim=0) | |
cam = F.relu(cam) | |
cam = cam.cpu().numpy() | |
cam = cv2.resize(cam, (image_width, image_height)) | |
cam = (cam - cam.min()) / (cam.max() - cam.min()) | |
cam[cam < threshold] = 0 | |
kernel_size = (5, 5) | |
sigma = 5.0 | |
cam_smooth = cv2.GaussianBlur(cam, kernel_size, sigma) | |
cam_smooth = cv2.resize(cam_smooth, (450, 450)) | |
plt.figure(figsize=(15, 5), dpi=300) | |
plt.subplot(1, 3, 1) | |
plt.imshow(cv2.cvtColor(img_original, cv2.COLOR_BGR2RGB)) | |
plt.title(f'Original\n{lesion_type} - 00{image_id}') | |
plt.axis('off') | |
plt.subplot(1, 3, 2) | |
plt.imshow(cv2.cvtColor(img_original, cv2.COLOR_BGR2RGB)) | |
plt.imshow(cam_smooth, cmap=plt.cm.jet, alpha=0.35) | |
plt.title(f'Grad-CAM\n{lesion_type} - 00{image_id}') | |
plt.axis('off') | |
plt.subplot(1, 3, 3) | |
plt.imshow(np.zeros((1, 1)), cmap=plt.cm.jet) | |
plt.gca().set_visible(False) | |
norm = colors.Normalize(vmin=0, vmax=1) | |
sm = cm.ScalarMappable(cmap=plt.cm.jet, norm=norm) | |
sm.set_array([]) | |
cbar = plt.colorbar(sm, ax=plt.gca(), orientation='vertical', fraction=1) | |
cbar.set_ticks([0.0, 1.0]) | |
cbar.set_ticklabels(['0.0', '1.0']) | |
cbar.ax.yaxis.set_ticks_position('left') | |
cbar.ax.yaxis.set_label_position('left') | |
plt.tight_layout() | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment