Skip to content

Instantly share code, notes, and snippets.

@MartinWeiss12
Last active October 23, 2024 17:40
Show Gist options
  • Save MartinWeiss12/cd185ac38fab0caefa31ddb5cb84e020 to your computer and use it in GitHub Desktop.
Save MartinWeiss12/cd185ac38fab0caefa31ddb5cb84e020 to your computer and use it in GitHub Desktop.
Generate Grad-CAM Plots
model = torch.load('skin-cancer-recognition.pth', weights_only=False, map_location=device)
threshold = 0.6
examples = [
{'image_class': 'mel', 'image_id': 28087, 'lesion_type': 'Malignant Melanoma (mel)'},
{'image_class': 'mel', 'image_id': 29571, 'lesion_type': 'Malignant Melanoma (mel)'},
{'image_class': 'bcc', 'image_id': 32290, 'lesion_type': 'Basal Cell Carcinoma (bcc)'},
{'image_class': 'vasc', 'image_id': 24867, 'lesion_type': 'Vascular Lesion (vasc)'},
{'image_class': 'nv', 'image_id': 28507, 'lesion_type': 'Benign Melanocytic Nevi (nv)'},
]
for img in examples:
img_path = f"{data_dir}/test/{img['image_class']}/ISIC_00{img['image_id']}.jpg"
grad_cam(model, threshold, img['image_id'], img_path, img['lesion_type'], image_width, image_height, device)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment