Last active
October 23, 2024 17:37
-
-
Save MartinWeiss12/f8e5d672bd0629789c19082d2be65a36 to your computer and use it in GitHub Desktop.
CNN
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class CNN(nn.Module): | |
def __init__(self, num_classes): | |
super(CNN, self).__init__() | |
self.CONV1 = 64 | |
self.CONV2 = 128 | |
self.CONV3 = 256 | |
self.CONV4 = 512 | |
self.FC1 = 64 | |
self.conv_layers = nn.Sequential( | |
nn.Conv2d(3, self.CONV1, kernel_size=3, padding=1), | |
nn.BatchNorm2d(self.CONV1), | |
nn.LeakyReLU(0.1), | |
nn.MaxPool2d(2, 2), | |
nn.Conv2d(self.CONV1, self.CONV2, kernel_size=3, padding=1), | |
nn.BatchNorm2d(self.CONV2), | |
nn.LeakyReLU(0.1), | |
nn.MaxPool2d(2, 2), | |
nn.Conv2d(self.CONV2, self.CONV3, kernel_size=3, padding=1), | |
nn.BatchNorm2d(self.CONV3), | |
nn.LeakyReLU(0.1), | |
nn.MaxPool2d(2, 2), | |
nn.Conv2d(self.CONV3, self.CONV4, kernel_size=3, padding=1), | |
nn.BatchNorm2d(self.CONV4), | |
nn.LeakyReLU(0.1), | |
nn.MaxPool2d(2, 2), | |
) | |
self.gap = nn.AdaptiveAvgPool2d(1) | |
self.fc1 = nn.Linear(self.CONV4, self.FC1) | |
self.dropout1 = nn.Dropout(p=0.2) | |
self.fc2 = nn.Linear(self.FC1, num_classes) | |
self.dropout2 = nn.Dropout(p=0.1) | |
def forward(self, x): | |
x = self.conv_layers(x) | |
x = self.gap(x) | |
x = x.view(x.size(0), -1) | |
x = F.leaky_relu(self.fc1(x), 0.1) | |
x = self.dropout1(x) | |
x = self.fc2(x) | |
x = self.dropout2(x) | |
return x | |
def predict(self, x): | |
logits = self.forward(x) | |
return F.softmax(logits, dim=1) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment