Last active
August 13, 2024 17:31
-
-
Save Mashpoe/3d949824be514c43b58706eb29c33c43 to your computer and use it in GitHub Desktop.
ASCII Tesseract Rotation C Program
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <stdio.h> | |
#define _USE_MATH_DEFINES | |
#include <math.h> | |
#include <windows.h> | |
// width and height of screen | |
#define ww 100 | |
#define wh 50 | |
void clr(CHAR_INFO* d) | |
{ | |
for (int i = 0; i < ww * wh; ++i) | |
{ | |
d[i].Attributes = FOREGROUND_GREEN; | |
d[i].Char.UnicodeChar = ' '; | |
} | |
} | |
void set(CHAR_INFO* d, COORD pt, char c) | |
{ | |
d[pt.Y * ww + pt.X].Char.UnicodeChar = c; | |
} | |
char getp(CHAR_INFO* d, COORD* pts, double err) | |
{ | |
if (abs(pts[0].Y - pts[2].Y) < 2) | |
{ | |
if (err > 0.5) | |
{ | |
return '-'; | |
} | |
return '_'; | |
} | |
if (abs(pts[0].X - pts[2].X) < 2 && | |
(pts[0].X >= pts[2].X || pts[1].X != pts[2].X) && | |
(pts[0].X <= pts[2].X || pts[1].X != pts[0].X)) | |
{ | |
return '|'; | |
} | |
int mX = pts[0].Y < pts[2].Y ? pts[0].X : pts[2].X; | |
return mX < pts[1].X ? '\\' : '/';\ | |
} | |
void ln(CHAR_INFO* d, COORD a, COORD b) | |
{ | |
set(d, a, '@'); | |
set(d, b, '@'); | |
int dx = abs(b.X - a.X), sx = a.X < b.X ? 1 : -1; | |
int dy = abs(b.Y - a.Y), sy = a.Y < b.Y ? 1 : -1; | |
int err = (dx > dy ? dx : -dy) / 2, e2; | |
COORD pts[3]; | |
double ers[3]; | |
for (int i = 0; i < 3; ++i) | |
{ | |
pts[i] = a; | |
ers[i] = ((double)err - dx) / ((double)dy - dx); | |
ers[i] = sy == 1 ? 1.0f - ers[i] : ers[i]; | |
if (a.X == b.X && a.Y == b.Y) { | |
return; | |
} | |
e2 = err; | |
if (e2 > -dx) { err -= dy; a.X += sx; } | |
if (e2 < dy) { err += dx; a.Y += sy; } | |
} | |
for (;;) | |
{ | |
set(d, pts[1], getp(d, pts, ers[1])); | |
pts[0] = pts[1]; | |
pts[1] = pts[2]; | |
pts[2] = a; | |
ers[0] = ers[1]; | |
ers[1] = ers[2]; | |
ers[2] = ((double)err - dx) / ((double)dy - dx); | |
ers[2] = sy == 1 ? 1.0f - ers[2] : ers[2]; | |
if (a.X == b.X && a.Y == b.Y) { | |
break; | |
} | |
e2 = err; | |
if (e2 > -dx) { err -= dy; a.X += sx; } | |
if (e2 < dy) { err += dx; a.Y += sy; } | |
} | |
// add the final point | |
set(d, pts[1], getp(d, pts, ers[1])); | |
} | |
// hypercube vertices in 4D | |
double V4[16][4] = | |
{ | |
{-1, -1, -1, -1}, | |
{ 1, -1, -1, -1}, | |
{-1, 1, -1, -1}, | |
{ 1, 1, -1, -1}, | |
{-1, -1, 1, -1}, | |
{ 1, -1, 1, -1}, | |
{-1, 1, 1, -1}, | |
{ 1, 1, 1, -1}, | |
{-1, -1, -1, 1}, | |
{ 1, -1, -1, 1}, | |
{-1, 1, -1, 1}, | |
{ 1, 1, -1, 1}, | |
{-1, -1, 1, 1}, | |
{ 1, -1, 1, 1}, | |
{-1, 1, 1, 1}, | |
{ 1, 1, 1, 1}, | |
}; | |
// store the vertices once they have been projected to 3D | |
double V3[16][3]; | |
// final 2D projection | |
double V2[16][2]; | |
// the indices for each line | |
int indices[32][2] = | |
{ | |
// cube #1 | |
{0, 1}, | |
{0, 2}, | |
{0, 4}, | |
{1, 3}, | |
{1, 5}, | |
{2, 3}, | |
{2, 6}, | |
{3, 7}, | |
{4, 5}, | |
{4, 6}, | |
{5, 7}, | |
{6, 7}, | |
// in-between lines | |
{0, 8}, | |
{1, 9}, | |
{2, 10}, | |
{3, 11}, | |
{4, 12}, | |
{5, 13}, | |
{6, 14}, | |
{7, 15}, | |
// cube #2 | |
{8, 9}, | |
{8, 10}, | |
{8, 12}, | |
{9, 11}, | |
{9, 13}, | |
{10, 11}, | |
{10, 14}, | |
{11, 15}, | |
{12, 13}, | |
{12, 14}, | |
{13, 15}, | |
{14, 15}, | |
}; | |
double dot4(const double* V, const double* U) | |
{ | |
return (V[0] * U[0]) + (V[1] * U[1]) + (V[2] * U[2]) + (V[3] * U[3]); | |
} | |
double norm4(const double* V) | |
{ | |
return sqrt(dot4(V, V)); | |
} | |
// cross4 computes the four-dimensional cross product of the three vectors | |
// U, V and W, in that order. | |
// returns the resulting four-vector. | |
void cross4(double* result, const double* U, const double* V, const double* W) | |
{ | |
// intermediate values | |
double A, B, C, D, E, F; | |
// calculate intermediate values | |
A = (V[0] * W[1]) - (V[1] * W[0]); | |
B = (V[0] * W[2]) - (V[2] * W[0]); | |
C = (V[0] * W[3]) - (V[3] * W[0]); | |
D = (V[1] * W[2]) - (V[2] * W[1]); | |
E = (V[1] * W[3]) - (V[3] * W[1]); | |
F = (V[2] * W[3]) - (V[3] * W[2]); | |
// calculate the result-vector components | |
result[0] = (U[1] * F) - (U[2] * E) + (U[3] * D); | |
result[1] = -(U[0] * F) + (U[2] * C) - (U[3] * B); | |
result[2] = (U[0] * E) - (U[1] * C) + (U[3] * A); | |
result[3] = -(U[0] * D) + (U[1] * B) - (U[2] * A); | |
} | |
void vecSub4(double* result, const double* a, const double* b) | |
{ | |
result[0] = a[0] - b[0]; | |
result[1] = a[1] - b[1]; | |
result[2] = a[2] - b[2]; | |
result[3] = a[3] - b[3]; | |
} | |
void vecScale4(double* vec, double m) | |
{ | |
vec[0] *= m; | |
vec[1] *= m; | |
vec[2] *= m; | |
vec[3] *= m; | |
} | |
void matVecMul4(double* result, const double* mat, const double* vec) | |
{ | |
for (int row = 0; row < 4; ++row) | |
{ | |
result[row] = 0; | |
for (int col = 0; col < 4; ++col) | |
{ | |
result[row] += mat[col * 4 + row] * vec[col]; | |
} | |
} | |
} | |
// creates a rotation matrix for the XW plane | |
// T is the angle in radians | |
void rotXW4(double* result, double T) | |
{ | |
// column vectors | |
double* Wa = result + 4 * 0; | |
double* Wb = result + 4 * 1; | |
double* Wc = result + 4 * 2; | |
double* Wd = result + 4 * 3; | |
Wa[0] = cos(T); | |
Wa[1] = 0; | |
Wa[2] = 0; | |
Wa[3] = -sin(T); | |
Wb[0] = 0; | |
Wb[1] = 1; | |
Wb[2] = 0; | |
Wb[3] = 0; | |
Wc[0] = 0; | |
Wc[1] = 0; | |
Wc[2] = 1; | |
Wc[3] = 0; | |
Wd[0] = sin(T); | |
Wd[1] = 0; | |
Wd[2] = 0; | |
Wd[3] = cos(T); | |
} | |
double from4[4] = { 5, 0, 0, 0 }; | |
double to4[4] = { 0, 0, 0, 0 }; | |
double up4[4] = { 0, 1, 0, 0 }; | |
double over4[4] = { 0, 0, 1, 0 }; | |
// generate a 4D view matrix | |
void view4(double* result) | |
{ | |
// column vectors | |
double* Wa = result + 4 * 0; | |
double* Wb = result + 4 * 1; | |
double* Wc = result + 4 * 2; | |
double* Wd = result + 4 * 3; | |
// vector norm | |
double norm; | |
// get the normalized Wd column-vector. | |
vecSub4(Wd, to4, from4); | |
norm = norm4(Wd); | |
vecScale4(Wd, 1 / norm); | |
// calculate the normalized Wa column-vector. | |
cross4(Wa, up4, over4, Wd); | |
norm = norm4(Wa); | |
vecScale4(Wa, 1 / norm); | |
// calculate the normalized Wb column-vector. | |
cross4(Wb, over4, Wd, Wa); | |
norm = norm4(Wb); | |
vecScale4(Wb, 1 / norm); | |
// calculate the Wc column-vector. | |
cross4(Wc, Wd, Wa, Wb); | |
} | |
void projectTo3D(double vAngle, const double* matView, const double* matRotation) | |
{ | |
// column vectors | |
const double* Wa = matView + 4 * 0; | |
const double* Wb = matView + 4 * 1; | |
const double* Wc = matView + 4 * 2; | |
const double* Wd = matView + 4 * 3; | |
// divisor Values | |
double S, T; | |
T = 1 / tan(vAngle / 2); | |
for (int i = 0; i < 16; ++i) | |
{ | |
double V[4]; | |
matVecMul4(V, matRotation, V4[i]); | |
double Vf[4]; | |
vecSub4(Vf, V, from4); | |
S = T / dot4(Vf, Wd); | |
V3[i][0] = S * dot4(Vf, Wa); | |
V3[i][1] = S * dot4(Vf, Wb); | |
V3[i][2] = S * dot4(Vf, Wc); | |
} | |
} | |
double dot3(const double* V, const double* U) | |
{ | |
return (V[0] * U[0]) + (V[1] * U[1]) + (V[2] * U[2]); | |
} | |
double norm3(const double* V) | |
{ | |
return sqrt(dot3(V, V)); | |
} | |
void cross3(double* result, const double* U, const double* V) | |
{ | |
result[0] = (U[1] * V[2]) - (U[2] * V[1]); | |
result[1] = (U[2] * V[0]) - (U[0] * V[2]); | |
result[2] = (U[0] * V[1]) - (U[1] * V[0]); | |
} | |
void vecSub3(double* result, const double* a, const double* b) | |
{ | |
result[0] = a[0] - b[0]; | |
result[1] = a[1] - b[1]; | |
result[2] = a[2] - b[2]; | |
} | |
void vecScale3(double* vec, double m) | |
{ | |
vec[0] *= m; | |
vec[1] *= m; | |
vec[2] *= m; | |
} | |
void matVecMul3(double* result, const double* mat, const double* vec) | |
{ | |
for (int row = 0; row < 3; ++row) | |
{ | |
result[row] = 0; | |
for (int col = 0; col < 3; ++col) | |
{ | |
result[row] += mat[col * 3 + row] * vec[col]; | |
} | |
} | |
} | |
void rotXZ3(double* result, double T) | |
{ | |
// column vectors | |
double* Va = result + 3 * 0; | |
double* Vb = result + 3 * 1; | |
double* Vc = result + 3 * 2; | |
Va[0] = cos(T); | |
Va[1] = 0; | |
Va[2] = -sin(T); | |
Vb[0] = 0; | |
Vb[1] = 1; | |
Vb[2] = 0; | |
Vc[0] = sin(T); | |
Vc[1] = 0; | |
Vc[2] = cos(T); | |
} | |
double from3[3] = { 3.00f, 0.99f, 1.82f }; | |
double to3[3] = { 0, 0, 0 }; | |
double up3[3] = { 0, -1, 0 }; | |
// generate a 3D view matrix | |
void view3(double* result) | |
{ | |
double* Va = result + 3 * 0; | |
double* Vb = result + 3 * 1; | |
double* Vc = result + 3 * 2; | |
double norm; | |
// Get the normalized Vc column-vector. | |
vecSub3(Vc, to3, from3); | |
norm = norm3(Vc); | |
vecScale3(Vc, 1 / norm); | |
// Calculate the normalized Va column-vector. | |
cross3(Va, Vc, up3); | |
norm = norm3(Va); | |
vecScale3(Va, 1 / norm); | |
// Calculate the Vb column-vector. | |
cross3(Vb, Va, Vc); | |
} | |
void projectTo2D(double vAngle, const double* matView, const double* matRotation) | |
{ | |
// column vectors | |
const double* Va = matView + 3 * 0; | |
const double* Vb = matView + 3 * 1; | |
const double* Vc = matView + 3 * 2; | |
// divisor values | |
double S, T; | |
T = 1 / tan(vAngle / 2); | |
for (int i = 0; i < 16; ++i) | |
{ | |
double V[3]; | |
matVecMul3(V, matRotation, V3[i]); | |
double Vf[3]; | |
vecSub3(Vf, V, from3); | |
S = T / dot3(Vf, Vc); | |
V2[i][0] = (ww / 2) + (ww * S * dot3(Vf, Va)); | |
V2[i][1] = (wh / 2) + (wh * S * dot3(Vf, Vb)); | |
} | |
} | |
int main(int argc, const char* argv[]) | |
{ | |
// get the console handle | |
HANDLE h = GetStdHandle(STD_OUTPUT_HANDLE); | |
// set console dimensions | |
COORD s = { ww, wh }; | |
SMALL_RECT r = { 0, 0, ww, wh }; | |
COORD z = { 0, 0 }; | |
SetConsoleScreenBufferSize(h, s); | |
SetConsoleWindowInfo(h, TRUE, &r); | |
CHAR_INFO d[wh * ww]; | |
double viewMat4[4 * 4]; | |
view4(viewMat4); | |
double rot4[4 * 4]; | |
double viewMat3[3 * 3]; | |
view3(viewMat3); | |
double rot3[3 * 3]; | |
double rotation = 0; | |
for (;;) | |
{ | |
rotation += 0.01f; | |
rotXW4(rot4, rotation); | |
projectTo3D(M_PI / 3, viewMat4, rot4); | |
rotXZ3(rot3, rotation * 0.3); | |
projectTo2D(M_PI / 4, viewMat3, rot3); | |
clr(d); | |
for (int i = 0; i < 32; ++i) | |
{ | |
int a = indices[i][0]; | |
int b = indices[i][1]; | |
COORD c1 = { (SHORT)V2[a][0], (SHORT)V2[a][1] }; | |
COORD c2 = { (SHORT)V2[b][0], (SHORT)V2[b][1] }; | |
ln(d, c1, c2); | |
} | |
WriteConsoleOutput(h, d, s, z, &r); | |
Sleep(1); | |
} | |
} |
<!--
/* Font Definitions */
@font-face
{font-family:Wingdings;
panose-1:5 0 0 0 0 0 0 0 0 0;}
@font-face
{font-family:"Cambria Math";
panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}
@font-face
{font-family:"Segoe UI Emoji";
panose-1:2 11 5 2 4 2 4 2 2 3;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0in;
font-size:11.0pt;
font-family:"Calibri",sans-serif;}
a:link, span.MsoHyperlink
{mso-style-priority:99;
color:blue;
text-decoration:underline;}
.MsoChpDefault
{mso-style-type:export-only;}
@page WordSection1
{size:8.5in 11.0in;
margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
{page:WordSection1;}
/* List Definitions */
@list l0
{mso-list-id:1266234454;
mso-list-template-ids:-1;}
@list l0:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l0:level2
{mso-level-number-format:bullet;
mso-level-text:o;
mso-level-tab-stop:1.0in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:"Courier New";
mso-bidi-font-family:"Times New Roman";}
@list l0:level3
{mso-level-number-format:bullet;
mso-level-text:\F0A7;
mso-level-tab-stop:1.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Wingdings;}
@list l0:level4
{mso-level-number-format:bullet;
mso-level-text:\F0A7;
mso-level-tab-stop:2.0in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Wingdings;}
@list l0:level5
{mso-level-number-format:bullet;
mso-level-text:\F0A7;
mso-level-tab-stop:2.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Wingdings;}
@list l0:level6
{mso-level-number-format:bullet;
mso-level-text:\F0A7;
mso-level-tab-stop:3.0in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Wingdings;}
@list l0:level7
{mso-level-number-format:bullet;
mso-level-text:\F0A7;
mso-level-tab-stop:3.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Wingdings;}
@list l0:level8
{mso-level-number-format:bullet;
mso-level-text:\F0A7;
mso-level-tab-stop:4.0in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Wingdings;}
@list l0:level9
{mso-level-number-format:bullet;
mso-level-text:\F0A7;
mso-level-tab-stop:4.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Wingdings;}
ol
{margin-bottom:0in;}
ul
{margin-bottom:0in;}
-->Here is a Linux port made by someone else on GitHub: https://github.com/dominicmkennedy/hypercube I hope this works! Sent from Mail for Windows From: Red-exe-EngineerSent: Monday, May 16, 2022 5:22 PMTo: MashpoeCc: Mashpoe; AuthorSubject: Re: ***@***.*** commented on this gist.LINUX 👀Dear Mr. Mashpoe, if you could be so kind as to make a Linux version of this I would be super grateful :pWallee—Reply to this email directly, view it on GitHub, or unsubscribe.You are receiving this because you authored the thread.Message ID: ***@***.***>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
LINUX 👀
Dear Mr. Mashpoe, if you could be so kind as to make a Linux version of this I would be super grateful :p