Skip to content

Instantly share code, notes, and snippets.

@MateusZitelli
Created December 10, 2017 05:16
Show Gist options
  • Save MateusZitelli/16ea6bee82d3eaa8a8ed385f12a02a8d to your computer and use it in GitHub Desktop.
Save MateusZitelli/16ea6bee82d3eaa8a8ed385f12a02a8d to your computer and use it in GitHub Desktop.
Typesafe Genetic Algorithm in Python
from typing import Tuple, Iterable, Callable, TypeVar
import functools
Solution = TypeVar("Solution")
Population = Iterable[Solution]
EvaluatedPopulation = Iterable[Tuple[float, Solution]]
EvolutionState = Tuple[EvaluatedPopulation, bool]
FitnessFunction = Callable[[Solution], float]
Mutator = Callable[[Solution], Solution]
Selector = Callable[[EvaluatedPopulation], EvaluatedPopulation]
Evaluator = Callable[[Population], EvaluatedPopulation]
Proliferator = Callable[[EvaluatedPopulation], Population]
Iterator = Callable[[EvolutionState, int], EvaluatedPopulation]
Stopper = Callable[[EvaluatedPopulation, int], bool]
Logger = Callable[[EvaluatedPopulation, int], None]
def evaluator_constructor(fitness_function: FitnessFunction) -> Evaluator:
def evaluate(population: Population) -> EvaluatedPopulation:
fitnesses = [fitness_function(solution) for solution in population]
return sorted(zip(fitnesses, population), reverse=True, key=lambda f_: f_[0])
return evaluate
def proliferate_constructor(reproduction_select: Selector, mutate: Mutator) -> Proliferator:
def proliferate(evaluated_population: EvaluatedPopulation) -> Population:
selected = reproduction_select(evaluated_population)
mutated_population = [mutate(solution[1]) for solution in selected]
return mutated_population
return proliferate
def iterator_constructor(evaluate: Evaluator, proliferate: Proliferator,
survival_selector: Selector, elite_selector: Selector,
stopper: Stopper, logger: Logger) -> Iterator:
def iterator(evolution_state: EvolutionState, g: int):
evaluated_population = evolution_state[0]
ended = evolution_state[1]
if logger is not None and not ended:
logger(evaluated_population, g)
if ended or stopper(evaluated_population, g):
return (evaluated_population, True)
proliferated_population = proliferate(evaluated_population)
evaluated_proliferated_population = list(evaluate(proliferated_population))
elite = list(elite_selector(evaluated_population))
next_population = survival_selector(elite +
evaluated_proliferated_population)
return (next_population, False)
return iterator
def identity(evaluated_population: EvaluatedPopulation) -> EvaluatedPopulation:
evaluated_population_list = list(evaluated_population)
return evaluated_population_list
def create_n_best_selector(n: int) -> Selector:
def n_best(evaluated_population: EvaluatedPopulation) -> EvaluatedPopulation:
return sorted(evaluated_population, reverse=True, key=lambda x: x[0])[:n]
return n_best
def run_mu_plus_lambda(initial_population: Population, mutate: Mutator,
fitness: FitnessFunction, stopper: Stopper,
population_size: int, generations: int,
logger: Logger=None) -> Solution:
evaluate = evaluator_constructor(fitness)
proliferate = proliferate_constructor(identity, mutate)
n_best = create_n_best_selector(population_size)
iterator = iterator_constructor(evaluate=evaluate,
proliferate=proliferate,
survival_selector=n_best,
elite_selector=identity,
stopper=stopper,
logger=logger)
initial_population_list = list(initial_population)
initial_population_evaluated = evaluate(initial_population_list)
initial_state = (initial_population_evaluated, False)
final_population = functools.reduce(iterator, range(generations),
initial_state)
return list(final_population)[0][1]
if __name__ == "__main__":
import random
def add_sub(x: float) -> float:
if random.random() < 0.1:
if random.random() > 0.5:
return x + 0.1
else:
return x - 0.1
return x
def fitness(x: float) -> float:
return -abs(x * x - 2 * x - 5)
# Run all generations
def stopper(population, generation):
return False
initial_population = [random.random() * 2.0 - 1 for i in range(10)]
print(run_mu_plus_lambda(initial_population, add_sub, fitness, stopper, 10,
100000))
# Return best tuple(fitness, solution)
# > (-0.10598746517817759, -1.471029636645052)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment