Last active
October 31, 2020 20:48
-
-
Save MatheusR42/ec9445e00e399a9ebfda3598f4900815 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def createTable(variableToChange, graphFunc): | |
table = [] | |
p = 0.05 | |
n = 300 | |
if variableToChange == "N": | |
for n in range(100, 1000, 50): | |
G = erdos_renyi_graph(n, p) if graphFunc == 'erdos_renyi_graph' else watts_strogatz_graph(n, 4, p) | |
table.append({ | |
"N": n, | |
"Número de arestas": G.number_of_edges(), | |
"Grau médio": grau_medio(G), | |
"Coef. de agrupamento médio": nx.average_clustering(G), | |
"Distância média": nx.average_shortest_path_length(G) if nx.is_connected(G) else np.nan, | |
"Componentes conexos": nx.number_connected_components(G), | |
}) | |
elif variableToChange == "P": | |
for p in range(5, 101, 5): | |
p = p / 100 | |
G = erdos_renyi_graph(n, p) if graphFunc == 'erdos_renyi_graph' else watts_strogatz_graph(n, 4, p) | |
table.append({ | |
"P": p, | |
"Número de arestas": G.number_of_edges(), | |
"Grau médio": grau_medio(G), | |
"Coef. de agrupamento médio": nx.average_clustering(G), | |
"Distância média": nx.average_shortest_path_length(G) if nx.is_connected(G) else np.nan, | |
"Componentes conexos": nx.number_connected_components(G), | |
}) | |
return pd.DataFrame(table) | |
def plotTable(df, variableToChange): | |
for col in ["Grau médio","Coef. de agrupamento médio","Distância média","Componentes conexos"]: | |
dfToPlot = df.dropna(how = 'any') if col == "Distância média" else df | |
fig = plt.figure() | |
fig.patch.set_facecolor('w') | |
plt.plot(dfToPlot[variableToChange], dfToPlot[col]) | |
plt.title(col) | |
plt.xlabel(variableToChange) | |
plt.ylabel(col) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment