Last active
August 19, 2018 08:50
-
-
Save Mathias-Fuchs/b127324f67135ee23b5628ea15924c0f to your computer and use it in GitHub Desktop.
a snippet of R code showing the convergence of a Fourier series against a sum of Dirac measures. The spatstat package is only used for visualisation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
*~ | |
.Rhistory | |
Rplot*.* |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
require(spatstat) | |
window <- owin(c(0, 1), c(0, 1)) | |
maxM <- 30 | |
eig <- function(k, m, x, y) sin(k * pi * x) * sin(m * pi * y) | |
MakePredictedFunction <- function(chi) { | |
f <- function(x, y) { | |
a <- 0 | |
for (k in 1:maxM) { | |
for (m in 1:maxM) { | |
a <- a + chi[k, m] * eig(x = x, y = y, k = k, m = m) | |
} | |
} | |
a | |
} | |
f | |
} | |
circleParamX <- function(t) cos(2 * pi * t)/3 + 1/2 | |
circleParamY <- function(t) sin(2 * pi * t)/3 + 1/2 | |
smallCircleLeftParamX <- function(t) cos(2 * pi * t)/6 + 1/4 | |
smallCircleLeftParamY <- function(t) sin(2 * pi * t)/6 + 1/2 | |
smallCircleRightParamX <- function(t) cos(2 * pi * t)/6 + 3/4 | |
smallCircleRightParamY <- function(t) sin(2 * pi * t)/6 + 1/2 | |
twoCirclesParamX <- function(t) { | |
if (length(t) == 1) { | |
if (t<1/2) {return(smallCircleLeftParamX(2*t))} else {return(smallCircleRightParamX(2*t-1))} } | |
r <- rep(NA, length(t)) | |
ww <- t < 1/2 | |
r[ww] <- smallCircleLeftParamX(2*t[ww]) | |
r[!ww] <- smallCircleRightParamX(2*t[!ww]) | |
r | |
} | |
twoCirclesParamY <- function(t) { | |
if (length(t) == 1) { | |
if (t<1/2) {return(smallCircleLeftParamY(2*t))} else {return(smallCircleRightParamY(2*t-1))} } | |
r <- rep(NA, length(t)) | |
ww <- t < 1/2 | |
r[ww] <- smallCircleLeftParamY(2*t[ww]) | |
r[!ww] <- smallCircleRightParamY(2*t[!ww]) | |
r | |
} | |
# start of homotopy | |
integrand <- function(t, k, m) eig(k=k, m=m, x=twoCirclesParamX(t), twoCirclesParamY(t)) | |
chi0 <- matrix(0.0, ncol = maxM, nrow = maxM) | |
for (k in 1:maxM) { | |
for (m in 1:maxM) { | |
chi0[k, m] <- integrate(integrand, 0, 1, k=k, m=m)$value | |
} | |
} | |
# try out this one: plot(as.im(chi0)) | |
predictedFunction <- MakePredictedFunction(chi0) | |
pf <- as.im(predictedFunction, W = window) | |
pp <- ppp(x=twoCirclesParamX(seq(0,1,length.out=1000)), y=twoCirclesParamY(seq(0,1,length.out=1000)), W = window) | |
plottees <- list(pf,pp) | |
plot(as.layered(as.solist(plottees)), main = paste("partial sum of Fourier series comprising", maxM^2, "terms")) | |
# end of homotopy | |
integrand <- function(t, k, m) eig(k=k, m=m, x=circleParamX(t), circleParamY(t)) | |
chi1 <- matrix(0.0, ncol = maxM, nrow = maxM) | |
for (k in 1:maxM) { | |
for (m in 1:maxM) { | |
chi1[k, m] <- integrate(integrand, 0, 1, k=k, m=m)$value | |
} | |
} | |
# try out this one: plot(as.im(chi1)) | |
predictedFunction <- MakePredictedFunction(chi1) | |
pf <- as.im(predictedFunction, W = window) | |
pp <- ppp(x=circleParamX(seq(0,1,length.out=1000)), y=circleParamY(seq(0,1,length.out=1000)), W = window) | |
plottees <- list(pf,pp) | |
plot(as.layered(as.solist(plottees)), main = paste("partial sum of Fourier series comprising", maxM^2, "terms")) | |
for (j in seq(0,1,length.out=40)) { | |
chi <- (1-j) * chi0 + j*chi1 | |
predictedFunction <- MakePredictedFunction(chi) | |
pf <- as.im(predictedFunction, W = window) | |
plottees <- list(pf) | |
plot(as.layered(as.solist(plottees))) | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
require(spatstat) | |
eig <- function(k, m, x, y) sin(k * pi * x) * sin(m * pi * y) | |
xs <- runif(14) | |
ys <- runif(14) | |
D <- data.frame(x = xs, y = ys) | |
p <- ppp(xs, ys) | |
par(mfrow = c(3, 3)) | |
for (i in 2:10) { | |
maxM <- i | |
chi <- matrix(0.0, ncol = maxM, nrow = maxM) | |
for (k in 1:maxM) { | |
for (m in 1:maxM) { | |
chi[k, m] <- mean(apply(D, 1, function(z) eig(x = z[1], y = z[2], k = k, m = m))) | |
} | |
} | |
predictedFunction <- function(x, y) { | |
a <- 0 | |
for (k in 1:maxM) { | |
for (m in 1:maxM) { | |
a <- a + chi[k, m] * eig(x = x, y = y, k = k, m = m) | |
} | |
} | |
a | |
} | |
pf <- as.im(predictedFunction, W = Window(p)) | |
plottees <- list(pf, p) | |
plot(as.layered(as.solist(plottees)), main = paste("partial sum of Fourier series comprising", maxM^2, "terms")) | |
} |
Author
Mathias-Fuchs
commented
Aug 15, 2018
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment