Last active
November 8, 2016 17:45
-
-
Save MattChanTK/fc7f9e3fffece3ec4a23b9c74ad39848 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| ''' | |
| --------------------------------------------- | |
| Constructing the Convolutional Neural Network | |
| --------------------------------------------- | |
| ''' | |
| def create_convolutional_neural_network(input_vars, out_dims, dropout_prob=0.0): | |
| convolutional_layer_1 = Convolution((5, 5), 32, strides=1, activation=cntk.ops.relu, pad=True)(input_vars) | |
| pooling_layer_1 = MaxPooling((2, 2), strides=(2, 2), pad=True)(convolutional_layer_1) | |
| convolutional_layer_2 = Convolution((5, 5), 64, strides=1, activation=cntk.ops.relu, pad=True)(pooling_layer_1) | |
| pooling_layer_2 = MaxPooling((2, 2), strides=(2, 2), pad=True)(convolutional_layer_2) | |
| fully_connected_layer = Dense(1024, activation=cntk.ops.relu)(pooling_layer_2) | |
| dropout_layer = Dropout(dropout_prob)(fully_connected_layer) | |
| output_layer = Dense(out_dims, activation=None)(dropout_layer) | |
| return output_layer | |
| # Define the input to the neural network | |
| input_vars = cntk.ops.input_variable(image_shape, np.float32) | |
| # Create the convolutional neural network | |
| output = create_convolutional_neural_network(input_vars, output_dim, dropout_prob=0.5) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment