Skip to content

Instantly share code, notes, and snippets.

@MattCowgill
Created June 12, 2023 23:20
Show Gist options
  • Save MattCowgill/5fccbc9bb97741152defa1d73017d461 to your computer and use it in GitHub Desktop.
Save MattCowgill/5fccbc9bb97741152defa1d73017d461 to your computer and use it in GitHub Desktop.
library(tidyverse)
library(gtrendsR)
inf <- gtrends(
keyword = "inflation",
geo = c("AU", "US"),
onlyInterest = TRUE) %>%
magrittr::extract2("interest_over_time") %>%
dplyr::as_tibble() %>%
dplyr::mutate(date = as.Date(date))
inf |>
group_by(geo) |>
mutate(hits_ma = slider::slide_mean(hits, before = 3L, complete = T),
geo = if_else(geo == "AU", "Australia", geo)) |>
ggplot(aes(x = date, y = hits, col = geo)) +
geom_line(alpha = 0.33, linetype = 2) +
geom_line(aes(y = hits_ma)) +
ggdirectlabel::scale_x_date_rightalign(expand = expansion(0.025)) +
hrbrthemes::theme_ipsum_rc(base_size = 16) +
labs(caption = "Note: dotted lines are weekly data; solid lines are 4 week moving averages.\nSource: Google Trends.",
subtitle = "Google search queries for 'inflation' (index numbers; 100 = highest value for the series)",
title = "Australians' searches for 'inflation' are on the rise again") +
theme(legend.title = element_blank(),
legend.position = c(0.1, 0.9),
axis.title.x = element_blank(),
axis.title.y = element_blank())
@MattCowgill
Copy link
Author

inf_searches

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment