Created
March 26, 2017 15:52
-
-
Save MatthieuBizien/802b2ecac6beecaa1e14a7bd44f91c06 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class HashingTfIdfVectorizer: | |
"""Difference with HashingVectorizer: non_negative=True, norm=None, dtype=np.float32""" | |
def __init__(self, ngram_range=(1, 1), analyzer=u'word', n_features=1 << 21, min_df=1, sublinear_tf=False): | |
self.min_df = min_df | |
self.hasher = HashingVectorizer(non_negative=True, norm=None, dtype=np.float32, | |
ngram_range=ngram_range, analyzer=analyzer, n_features=n_features) | |
self.tfidf = TfidfTransformer(sublinear_tf=sublinear_tf) | |
def fit_transform(self, X, y=None): | |
X_hashed = self.hasher.fit_transform(X) | |
self.mask = np.array((X_hashed != 0).sum(axis=0)).flatten() >= self.min_df | |
X_masked = X_hashed[:, self.mask] | |
return self.tfidf.fit_transform(X_masked) | |
def fit(self, X, y=None): | |
self.fit_transform(X, y) | |
return self | |
def transform(self, X): | |
X_hashed = self.hasher.transform(X) | |
X_masked = X_hashed[:, self.mask] | |
return self.tfidf.transform(X_masked) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment