Created
August 6, 2018 09:25
-
-
Save MaxHalford/1a1f5f8bb1b4a38790d184d6fa6e16f5 to your computer and use it in GitHub Desktop.
Keras CNN blueprint
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import glob | |
import imageio | |
from keras import layers | |
from keras import losses | |
from keras import models | |
from keras import optimizers | |
import numpy as np | |
import pandas as pd | |
masks = pd.read_csv('data/train_ship_segmentations.csv', index_col=0)['EncodedPixels'] | |
target = masks.notnull()[~masks.index.duplicated()].astype(np.uint8) | |
def bake_model(): | |
init = layers.Input(shape=(768, 768, 3)) | |
x = layers.Conv2D(32, (3, 3), activation='relu', padding='same')(init) | |
x = layers.Flatten()(x) | |
out = layers.Dense(1, activation='sigmoid')(x) | |
model = models.Model(inputs=init, outputs=out) | |
loss = losses.binary_crossentropy | |
optimizer = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) | |
model.compile(loss=loss, optimizer=optimizer, metrics=['accuracy']) | |
return model | |
def generate(batch_size): | |
features = np.zeros((batch_size, 768, 768, 3)) | |
labels = np.zeros((batch_size, 1)) | |
i = 0 | |
while True: | |
for file in glob.glob('data/train/*.jpg'): | |
features[i] = imageio.imread(file) | |
labels[i] = target[file.split('/')[-1]] | |
i += 1 | |
if i == batch_size: | |
i = 0 | |
yield (features, labels) | |
def main(): | |
model = bake_model() | |
model.fit_generator( | |
generate(batch_size=16), | |
steps_per_epoch=100, | |
epochs=10, | |
verbose=1 | |
) | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment