Created
January 20, 2020 13:26
-
-
Save MaximKsh/baeb582fc73ed9ecfd5562b6f6684114 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// Copyright 2019 The MediaPipe Authors. | |
// | |
// Licensed under the Apache License, Version 2.0 (the "License"); | |
// you may not use this file except in compliance with the License. | |
// You may obtain a copy of the License at | |
// | |
// http://www.apache.org/licenses/LICENSE-2.0 | |
// | |
// Unless required by applicable law or agreed to in writing, software | |
// distributed under the License is distributed on an "AS IS" BASIS, | |
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
// See the License for the specific language governing permissions and | |
// limitations under the License. | |
#include <android/log.h> | |
#include "mediapipe//framework/packet.h" | |
#include "mediapipe/calculators/util/detection_label_id_to_text_calculator.pb.h" | |
#include "mediapipe/framework/calculator_framework.h" | |
#include "mediapipe/framework/formats/detection.pb.h" | |
#include "mediapipe/framework/port/status.h" | |
#include "mediapipe/util/resource_util.h" | |
#if defined(MEDIAPIPE_MOBILE) | |
#include "mediapipe/util/android/file/base/file.h" | |
#include "mediapipe/util/android/file/base/helpers.h" | |
#else | |
#include "mediapipe/framework/port/file_helpers.h" | |
#endif | |
namespace mediapipe { | |
// Takes a label map (from label IDs to names), and replaces the label IDs | |
// in Detection protos with label names. Note that the calculator makes a copy | |
// of the input detections. Consider using it only when the size of input | |
// detections is small. | |
// | |
// Example usage: | |
// node { | |
// calculator: "DetectionLabelIdToTextCalculator" | |
// input_stream: "input_detections" | |
// output_stream: "output_detections" | |
// node_options: { | |
// [type.googleapis.com/mediapipe.DetectionLabelIdToTextCalculatorOptions] { | |
// label_map_path: "labelmap.txt" | |
// } | |
// } | |
// } | |
class DetectionLabelIdToTextCalculator : public CalculatorBase { | |
public: | |
static ::mediapipe::Status GetContract(CalculatorContract* cc); | |
::mediapipe::Status Open(CalculatorContext* cc) override; | |
::mediapipe::Status Process(CalculatorContext* cc) override; | |
private: | |
std::unordered_map<int, std::string> label_map_; | |
}; | |
REGISTER_CALCULATOR(DetectionLabelIdToTextCalculator); | |
::mediapipe::Status DetectionLabelIdToTextCalculator::GetContract( | |
CalculatorContract* cc) { | |
cc->Inputs().Get("", 0).Set<std::vector<Detection>>(); | |
cc->Outputs().Index(0).Set<std::vector<Detection>>(); | |
cc->Inputs().Get("SECOND", 0).SetAny(); | |
return ::mediapipe::OkStatus(); | |
} | |
::mediapipe::Status DetectionLabelIdToTextCalculator::Open( | |
CalculatorContext* cc) { | |
cc->SetOffset(TimestampDiff(0)); | |
__android_log_print(ANDROID_LOG_ERROR, "MediapipeTest", "%s", "Open"); | |
const auto& options = | |
cc->Options<::mediapipe::DetectionLabelIdToTextCalculatorOptions>(); | |
std::string string_path; | |
ASSIGN_OR_RETURN(string_path, PathToResourceAsFile(options.label_map_path())); | |
std::string label_map_string; | |
MP_RETURN_IF_ERROR(file::GetContents(string_path, &label_map_string)); | |
std::istringstream stream(label_map_string); | |
std::string line; | |
int i = 0; | |
while (std::getline(stream, line)) { | |
label_map_[i++] = line; | |
} | |
return ::mediapipe::OkStatus(); | |
} | |
::mediapipe::Status DetectionLabelIdToTextCalculator::Process( | |
CalculatorContext* cc) { | |
__android_log_print(ANDROID_LOG_ERROR, "MediapipeTest", "%s", "never print"); | |
std::vector<Detection> output_detections; | |
for (const auto& input_detection : | |
cc->Inputs().Index(0).Get<std::vector<Detection>>()) { | |
output_detections.push_back(input_detection); | |
Detection& output_detection = output_detections.back(); | |
bool has_text_label = false; | |
for (const int32 label_id : output_detection.label_id()) { | |
if (label_map_.find(label_id) != label_map_.end()) { | |
output_detection.add_label(label_map_[label_id]); | |
has_text_label = true; | |
} | |
} | |
// Remove label_id field if text labels exist. | |
if (has_text_label) { | |
output_detection.clear_label_id(); | |
} | |
} | |
cc->Outputs().Index(0).AddPacket( | |
MakePacket<std::vector<Detection>>(output_detections) | |
.At(cc->InputTimestamp())); | |
return ::mediapipe::OkStatus(); | |
} | |
} // namespace mediapipe |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# MediaPipe graph that performs object detection with TensorFlow Lite on GPU. | |
# Used in the examples in | |
# mediapipe/examples/android/src/java/com/mediapipe/apps/objectdetectiongpu and | |
# mediapipe/examples/ios/objectdetectiongpu. | |
# Images on GPU coming into and out of the graph. | |
input_stream: "input_video" | |
input_stream: "second_input" | |
output_stream: "output_video" | |
# Throttles the images flowing downstream for flow control. It passes through | |
# the very first incoming image unaltered, and waits for | |
# TfLiteTensorsToDetectionsCalculator downstream in the graph to finish | |
# generating the corresponding detections before it passes through another | |
# image. All images that come in while waiting are dropped, limiting the number | |
# of in-flight images between this calculator and | |
# TfLiteTensorsToDetectionsCalculator to 1. This prevents the nodes in between | |
# from queuing up incoming images and data excessively, which leads to increased | |
# latency and memory usage, unwanted in real-time mobile applications. It also | |
# eliminates unnecessarily computation, e.g., a transformed image produced by | |
# ImageTransformationCalculator may get dropped downstream if the subsequent | |
# TfLiteConverterCalculator or TfLiteInferenceCalculator is still busy | |
# processing previous inputs. | |
node { | |
calculator: "FlowLimiterCalculator" | |
input_stream: "input_video" | |
input_stream: "FINISHED:detections" | |
input_stream_info: { | |
tag_index: "FINISHED" | |
back_edge: true | |
} | |
output_stream: "throttled_input_video" | |
} | |
# Transforms the input image on GPU to a 320x320 image. To scale the image, by | |
# default it uses the STRETCH scale mode that maps the entire input image to the | |
# entire transformed image. As a result, image aspect ratio may be changed and | |
# objects in the image may be deformed (stretched or squeezed), but the object | |
# detection model used in this graph is agnostic to that deformation. | |
node: { | |
calculator: "ImageTransformationCalculator" | |
input_stream: "IMAGE_GPU:throttled_input_video" | |
output_stream: "IMAGE_GPU:transformed_input_video" | |
node_options: { | |
[type.googleapis.com/mediapipe.ImageTransformationCalculatorOptions] { | |
output_width: 320 | |
output_height: 320 | |
} | |
} | |
} | |
# Converts the transformed input image on GPU into an image tensor stored as a | |
# TfLiteTensor. | |
node { | |
calculator: "TfLiteConverterCalculator" | |
input_stream: "IMAGE_GPU:transformed_input_video" | |
output_stream: "TENSORS_GPU:image_tensor" | |
} | |
# Runs a TensorFlow Lite model on GPU that takes an image tensor and outputs a | |
# vector of tensors representing, for instance, detection boxes/keypoints and | |
# scores. | |
node { | |
calculator: "TfLiteInferenceCalculator" | |
input_stream: "TENSORS_GPU:image_tensor" | |
output_stream: "TENSORS_GPU:detection_tensors" | |
node_options: { | |
[type.googleapis.com/mediapipe.TfLiteInferenceCalculatorOptions] { | |
model_path: "mediapipe/models/ssdlite_object_detection.tflite" | |
} | |
} | |
} | |
# Generates a single side packet containing a vector of SSD anchors based on | |
# the specification in the options. | |
node { | |
calculator: "SsdAnchorsCalculator" | |
output_side_packet: "anchors" | |
node_options: { | |
[type.googleapis.com/mediapipe.SsdAnchorsCalculatorOptions] { | |
num_layers: 6 | |
min_scale: 0.2 | |
max_scale: 0.95 | |
input_size_height: 320 | |
input_size_width: 320 | |
anchor_offset_x: 0.5 | |
anchor_offset_y: 0.5 | |
strides: 16 | |
strides: 32 | |
strides: 64 | |
strides: 128 | |
strides: 256 | |
strides: 512 | |
aspect_ratios: 1.0 | |
aspect_ratios: 2.0 | |
aspect_ratios: 0.5 | |
aspect_ratios: 3.0 | |
aspect_ratios: 0.3333 | |
reduce_boxes_in_lowest_layer: true | |
} | |
} | |
} | |
# Decodes the detection tensors generated by the TensorFlow Lite model, based on | |
# the SSD anchors and the specification in the options, into a vector of | |
# detections. Each detection describes a detected object. | |
node { | |
calculator: "TfLiteTensorsToDetectionsCalculator" | |
input_stream: "TENSORS_GPU:detection_tensors" | |
input_side_packet: "ANCHORS:anchors" | |
output_stream: "DETECTIONS:detections" | |
node_options: { | |
[type.googleapis.com/mediapipe.TfLiteTensorsToDetectionsCalculatorOptions] { | |
num_classes: 91 | |
num_boxes: 2034 | |
num_coords: 4 | |
ignore_classes: 0 | |
sigmoid_score: true | |
apply_exponential_on_box_size: true | |
x_scale: 10.0 | |
y_scale: 10.0 | |
h_scale: 5.0 | |
w_scale: 5.0 | |
min_score_thresh: 0.6 | |
} | |
} | |
} | |
# Performs non-max suppression to remove excessive detections. | |
node { | |
calculator: "NonMaxSuppressionCalculator" | |
input_stream: "detections" | |
output_stream: "filtered_detections" | |
node_options: { | |
[type.googleapis.com/mediapipe.NonMaxSuppressionCalculatorOptions] { | |
min_suppression_threshold: 0.4 | |
max_num_detections: 3 | |
overlap_type: INTERSECTION_OVER_UNION | |
return_empty_detections: true | |
} | |
} | |
} | |
# Maps detection label IDs to the corresponding label text. The label map is | |
# provided in the label_map_path option. | |
node { | |
calculator: "DetectionLabelIdToTextCalculator" | |
input_stream: "filtered_detections" | |
input_stream: "SECOND:second_input" | |
output_stream: "output_detections" | |
node_options: { | |
[type.googleapis.com/mediapipe.DetectionLabelIdToTextCalculatorOptions] { | |
label_map_path: "mediapipe/models/ssdlite_object_detection_labelmap.txt" | |
} | |
} | |
} | |
# Converts the detections to drawing primitives for annotation overlay. | |
node { | |
calculator: "DetectionsToRenderDataCalculator" | |
input_stream: "DETECTIONS:output_detections" | |
output_stream: "RENDER_DATA:render_data" | |
node_options: { | |
[type.googleapis.com/mediapipe.DetectionsToRenderDataCalculatorOptions] { | |
thickness: 4.0 | |
color { r: 255 g: 0 b: 0 } | |
} | |
} | |
} | |
# Draws annotations and overlays them on top of the input images. | |
node { | |
calculator: "AnnotationOverlayCalculator" | |
input_stream: "INPUT_FRAME_GPU:throttled_input_video" | |
input_stream: "render_data" | |
output_stream: "OUTPUT_FRAME_GPU:output_video" | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment