Last active
December 31, 2018 02:42
-
-
Save Mcilie/d0535b972aacbe909ac07b7ca31d98f6 to your computer and use it in GitHub Desktop.
CNN in keras
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import keras | |
from keras.datasets import mnist | |
from keras.models import Sequential | |
from keras.layers import * | |
import numpy as np | |
(x_train, y_train), (x_test, y_test) = mnist.load_data() | |
print(x_train) | |
x_test = np.expand_dims(x_test, -1) | |
x_train = np.expand_dims(x_train, -1) | |
print(x_train) | |
model = Sequential() | |
model.add(Conv2D(32, kernel_size=(3,3), activation='relu', data_format = "channels_last", input_shape = (28,28,1))) | |
model.add(Conv2D(64, (3,3), activation='relu')) | |
model.add(MaxPooling2D(pool_size=(2,2))) | |
model.add(Dropout(0.25)) | |
model.add(Flatten()) | |
model.add(Dense(128,activation="relu")) | |
model.add(Dropout(0.5)) | |
model.add(Dense(10, activation='softmax')) | |
y_train = keras.utils.to_categorical(y_train) | |
y_test = keras.utils.to_categorical(y_test) | |
model.compile(loss = keras.losses.categorical_crossentropy, optimizer = keras.optimizers.Adadelta(), metrics = ['accuracy']) | |
model.fit(x_train,y_train, | |
batch_size = 64, | |
epochs = int(input("Yo fam, epochs pls: ")), | |
verbose = 1, | |
validation_data = (x_test, y_test)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment