Created
August 8, 2018 16:30
-
-
Save MeetMartin/e27687a8140d6ca20e6987f7b087b9e3 to your computer and use it in GitHub Desktop.
Rasa platform trainer Python script
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
from __future__ import unicode_literals | |
import argparse | |
import warnings | |
from rasa_nlu.training_data import load_data | |
from rasa_nlu import config | |
from rasa_nlu.model import Trainer | |
from rasa_core import utils | |
from rasa_core.agent import Agent | |
from rasa_core.policies.keras_policy import KerasPolicy | |
from rasa_core.policies.memoization import MemoizationPolicy | |
def train_nlu(): | |
training_data = load_data('data/nlu-data.md') | |
trainer = Trainer(config.load("nlu-config.yml")) | |
trainer.train(training_data) | |
model_directory = trainer.persist('models/nlu/', fixed_model_name="current") | |
return model_directory | |
def train_dialogue( | |
domain_file="domain.yml", | |
model_path="models/dialogue", | |
training_data_file="data/stories.md" | |
): | |
agent = Agent( | |
domain_file, | |
policies=[MemoizationPolicy(max_history=3), KerasPolicy()] | |
) | |
training_data = agent.load_data(training_data_file) | |
agent.train( | |
training_data, | |
epochs=400, | |
batch_size=100, | |
validation_split=0.2 | |
) | |
agent.persist(model_path) | |
return agent | |
def train_all(): | |
model_directory = train_nlu() | |
agent = train_dialogue() | |
return [model_directory, agent] | |
if __name__ == '__main__': | |
warnings.filterwarnings(action='ignore', category=DeprecationWarning) | |
utils.configure_colored_logging(loglevel="INFO") | |
parser = argparse.ArgumentParser( | |
description='starts the bot training') | |
parser.add_argument( | |
'task', | |
choices=["train-nlu", "train-dialogue", "train-all"], | |
help="what the bot should do?") | |
task = parser.parse_args().task | |
# decide what to do based on first parameter of the script | |
if task == "train-nlu": | |
train_nlu() | |
elif task == "train-dialogue": | |
train_dialogue() | |
elif task == "train-all": | |
train_all() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment