Created
August 4, 2020 18:23
-
-
Save MemphisMeng/007a098354f3a381849e64c0e814aa88 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
proba = {'Manchester City': {'qtr': 0, 'semi': 0, 'final': 0, 'champion': 0}, | |
'Bayern Munich': {'qtr': 0, 'semi': 0, 'final': 0, 'champion': 0}, | |
'Paris Saint-Germain': {'qtr': 300, 'semi': 0, 'final': 0, 'champion': 0}, | |
'Real Madrid': {'qtr': 0, 'semi': 0, 'final': 0, 'champion': 0}, | |
'Juventus': {'qtr': 0, 'semi': 0, 'final': 0, 'champion': 0}, | |
'Lyon': {'qtr': 0, 'semi': 0, 'final': 0, 'champion': 0}, | |
'Barcelona': {'qtr': 0, 'semi': 0, 'final': 0, 'champion': 0}, | |
'Napoli': {'qtr': 0, 'semi': 0, 'final': 0, 'champion': 0}, | |
'Chelsea': {'qtr': 0, 'semi': 0, 'final': 0, 'champion': 0}, | |
'Atalanta': {'qtr': 300, 'semi': 0, 'final': 0, 'champion': 0}, | |
'RB Leipzig': {'qtr': 300, 'semi': 0, 'final': 0, 'champion': 0}, | |
'Atletico Madrid': {'qtr': 300, 'semi': 0, 'final': 0, 'champion': 0}} | |
def simulate(): | |
overSampled_bo = BayesianOptimization( | |
xgb_cv, | |
{'eta': (0.01, 0.3), | |
'min_child_weight': (1, 25), | |
'max_depth': (3, 5), | |
'gamma': (0.0, 1.0), | |
'subsample': (0.5, 1), | |
'colsample_bytree': (0.5, 1), | |
'alpha': (0.0, 2.0), | |
'n_estimators': (90, 100), | |
'learning_rate': (0.0001, 0.1)}) | |
overSampled_bo.maximize() | |
overSampled_xgb_optimized = xgb.XGBClassifier(alpha=overSampled_bo.max['params']['alpha'], colsample_bytree=overSampled_bo.max['params']['colsample_bytree'], | |
eta=overSampled_bo.max['params']['eta'], gamma=overSampled_bo.max['params']['gamma'], | |
max_depth=int(overSampled_bo.max['params']['max_depth']), min_child_weight=overSampled_bo.max['params']['min_child_weight'], | |
subsample=overSampled_bo.max['params']['subsample'], n_estimators=int(overSampled_bo.max['params']['n_estimators']), | |
learning_rate=overSampled_bo.max['params']['learning_rate'], random_state=42) | |
overSampled_xgb_optimized = MultiOutputRegressor(overSampled_xgb_optimized) | |
overSampled_xgb_optimized.fit(X, y) | |
# round of 16 | |
predicted_results = overSampled_xgb_optimized.predict(future_games_pca) | |
winners = [] | |
for i in range(4): | |
winner = winner_judgment(future_games[['Home', 'Away']].iloc[i], predicted_results[i][0], predicted_results[i][1], True, | |
int(leg_1['Away_Score'].iloc[i]), int(leg_1['Home_Score'].iloc[i])) | |
winners.append(winner) | |
proba[winner]['qtr'] += 1 | |
# quarter finals | |
quarterFinals = pd.DataFrame({'Home': [winners[1], 'Atletico Madrid', winners[3], 'Paris Saint-Germain'], | |
'Away': [winners[0], 'RB Leipzig', winners[2], 'Atalanta']}) | |
quarterFinals = quarterFinals.merge(aggregate, left_on='Home', right_on='Squad') | |
quarterFinals = quarterFinals.merge(aggregate, left_on='Away', right_on='Squad', suffixes=('_Home', '_Away')) | |
quarterFinals = quarterFinals.drop(columns=['Squad_Home', 'Squad_Away']) | |
quarterFinals_pca = pca.transform(quarterFinals.drop(columns=['Home', 'Away'])) | |
quarterFinalPrediction = overSampled_xgb_optimized.predict(quarterFinals_pca) | |
semi_qualifiers = [] | |
for i in range(4): | |
semi_quafier = winner_judgment(quarterFinals[['Home', 'Away']].iloc[i], quarterFinalPrediction[i][0], quarterFinalPrediction[i][1]) | |
semi_qualifiers.append(semi_quafier) | |
proba[semi_quafier]['semi'] += 1 | |
# semi finals | |
semiFinals = pd.DataFrame({'Home': [semi_qualifiers[2], semi_qualifiers[3]], | |
'Away': [semi_qualifiers[0], semi_qualifiers[1]]}) | |
semiFinals = semiFinals.merge(aggregate, left_on='Home', right_on='Squad') | |
semiFinals = semiFinals.merge(aggregate, left_on='Away', right_on='Squad', suffixes=('_Home', '_Away')) | |
semiFinals = semiFinals.drop(columns=['Squad_Home', 'Squad_Away']) | |
semiFinals_pca = pca.transform(semiFinals.drop(columns=['Home', 'Away'])) | |
semiFinalsPrediction = overSampled_xgb_optimized.predict(semiFinals_pca) | |
finalists = [] | |
for i in range(2): | |
finalist = winner_judgment(semiFinals[['Home', 'Away']].iloc[i], semiFinalsPrediction[i][0], semiFinalsPrediction[i][1]) | |
finalists.append(finalist) | |
proba[finalist]['final'] += 1 | |
# final | |
Finals = pd.DataFrame({'Home': [finalists[1]], | |
'Away': [finalists[0]]}) | |
Finals = Finals.merge(aggregate, left_on='Home', right_on='Squad') | |
Finals = Finals.merge(aggregate, left_on='Away', right_on='Squad', suffixes=('_Home', '_Away')) | |
Finals = Finals.drop(columns=['Squad_Home', 'Squad_Away']) | |
Finals_pca = pca.transform(Finals.drop(columns=['Home', 'Away'])) | |
FinalPrediction = overSampled_xgb_optimized.predict(Finals_pca) | |
champion = winner_judgment(Finals[['Home', 'Away']].iloc[0], FinalPrediction[0][0], FinalPrediction[0][1]) | |
proba[champion]['champion'] += 1 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment