Created
August 12, 2020 19:16
-
-
Save MemphisMeng/61d949e397cba1a52eaf0c3b4ba47ed3 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# movie profile | |
movie_profile = movies[['id', 'title', 'genres']] | |
movie_profile.rename(columns={'id': 'movieId'}, inplace=True) | |
genres = [item.strip() for l in all_genres for item in l ] | |
unique_genres = set(genres) | |
for genre in unique_genres: | |
movie_profile[genre] = 0 | |
for i in range(len(movie_profile)): | |
if type(movie_profile['genres'].iloc[i]) != None.__class__: | |
Genres = movie_profile.iloc[i].genres.split(', ') | |
for g in Genres: | |
movie_profile[g].iloc[i] = 1 | |
movie_profile = movie_profile.drop(columns=['title', 'genres']).set_index('movieId') | |
movie_profile.sort_index(axis=0, inplace=True) | |
# user profile | |
user_x_movie = pd.pivot_table(ratings, values='rating', index=['movieId'], columns = ['userId']) | |
user_x_movie.sort_index(axis=0, inplace=True) | |
userIDs = user_x_movie.columns | |
user_profile = pd.DataFrame(columns = movie_profile.columns) | |
for i in tqdm(range(len(user_x_movie.columns))): | |
working_df = movie_profile.mul(user_x_movie.iloc[:,i], axis=0) | |
# working_df.replace(0, np.NaN, inplace=True) | |
user_profile.loc[userIDs[i]] = working_df.mean(axis=0) | |
# TFIDF | |
df = movie_profile.sum() | |
idf = (len(movies)/df).apply(np.log) #log inverse of DF | |
TFIDF = movie_profile.mul(idf.values) | |
# recommendation prediction | |
df_predict = pd.DataFrame() | |
for i in tqdm(range(len(user_x_movie.columns))): | |
working_df = TFIDF.mul(user_profile.iloc[i], axis=1) | |
df_predict[user_x_movie.columns[i]] = working_df.sum(axis=1) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment