Created
March 19, 2024 12:13
-
-
Save Menziess/11201a23d4ec197ca57a257927718df6 to your computer and use it in GitHub Desktop.
Spark flatten nested structures
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| from pyspark.sql.functions import * | |
| def flatten_structs(df): | |
| """Omits lists, and flattens structs into regular columns. | |
| >>> flatten_structs(test_df).show() # doctest: +NORMALIZE_WHITESPACE | |
| Omitted column rootstructype.nestedstructtype | |
| Omitted column arraytype | |
| +---+--------+---------+------------------+------------------+------------------+ | |
| | id| money|timestamp|structtype.number1|structtype.number2|structtype.number3| | |
| +---+--------+---------+------------------+------------------+------------------+ | |
| | 1|$100.000| 14| 1| 2| 3| | |
| | 1|$200.000| 15| 3| 2| 1| | |
| | 1| $10.000| 17| 1| 3| 2| | |
| | 2| -$100| 17| 3| 1| 2| | |
| | 2| $100| 14| 2| 1| 3| | |
| +---+--------+---------+------------------+------------------+------------------+ | |
| """ | |
| struct_selectors = [] | |
| for c in df.schema.jsonValue()['fields']: | |
| if isinstance(c['type'], str): | |
| struct_selectors.append(c['name']) | |
| elif isinstance(c['type'], dict) and c['type']['type'] == 'struct': | |
| for field in c['type']['fields']: | |
| if isinstance(field['type'], dict) or isinstance(field['type'], list): | |
| print('Omitted column', c['name'] + '.' + field['name']) | |
| else: | |
| struct_selectors.append('.'.join([c['name'], field['name']])) | |
| else: | |
| print('Omitted column', c['name']) | |
| return df.select(*[ | |
| col(selector).alias(selector) | |
| for selector | |
| in struct_selectors | |
| ]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment