Created
April 5, 2019 13:38
-
-
Save MexsonFernandes/ae332b7575b147c206f74971a4089d09 to your computer and use it in GitHub Desktop.
Python code for data collection from Neurosky Mindwave Mobile headset device
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pandas as pd | |
import sys | |
import json | |
import time | |
from telnetlib import Telnet | |
# Initializing the arrays required to store the data. | |
attention_values = np.array([]) | |
meditation_values = np.array([]) | |
delta_values = np.array([]) | |
theta_values = np.array([]) | |
lowAlpha_values = np.array([]) | |
highAlpha_values = np.array([]) | |
lowBeta_values = np.array([]) | |
highBeta_values = np.array([]) | |
lowGamma_values = np.array([]) | |
highGamma_values = np.array([]) | |
blinkStrength_values = np.array([]) | |
time_array = np.array([]) | |
tn=Telnet('localhost',13854); | |
start=time.clock(); | |
i=0; | |
tn.write('{"enableRawOutput": true, "format": "Json"}'); | |
outfile="null"; | |
if len(sys.argv)>1: | |
outfile=sys.argv[len(sys.argv)-1]; | |
outfptr=open(outfile,'w'); | |
eSenseDict={'attention':0, 'meditation':0}; | |
waveDict={'lowGamma':0, 'highGamma':0, 'highAlpha':0, 'delta':0, 'highBeta':0, 'lowAlpha':0, 'lowBeta':0, 'theta':0}; | |
signalLevel=0; | |
while time.clock() - start < 30: | |
blinkStrength=0; | |
line=tn.read_until('\r'); | |
if len(line) > 20: | |
timediff=time.clock()-start; | |
dict=json.loads(str(line)); | |
if "poorSignalLevel" in dict: | |
signalLevel=dict['poorSignalLevel']; | |
if "blinkStrength" in dict: | |
blinkStrength=dict['blinkStrength']; | |
if "eegPower" in dict: | |
waveDict=dict['eegPower']; | |
eSenseDict=dict['eSense']; | |
outputstr=str(timediff)+ ", "+ str(signalLevel)+", "+str(blinkStrength)+", " + str(eSenseDict['attention']) + ", " + str(eSenseDict['meditation']) + ", "+str(waveDict['lowGamma'])+", " + str(waveDict['highGamma'])+", "+ str(waveDict['highAlpha'])+", "+str(waveDict['delta'])+", "+ str(waveDict['highBeta'])+", "+str(waveDict['lowAlpha'])+", "+str(waveDict['lowBeta'])+ ", "+str(waveDict['theta']); | |
time_array = np.append(time_array, [timediff]); | |
blinkStrength_values = np.append(blinkStrength_values, [blinkStrength]); | |
lowGamma_values = np.append(lowGamma_values, [waveDict['lowGamma']]); | |
highGamma_values = np.append(highGamma_values, [waveDict['highGamma']]); | |
highAlpha_values = np.append(highAlpha_values, [waveDict['highAlpha']]); | |
delta_values = np.append(delta_values, [waveDict['delta']]); | |
lowBeta_values = np.append(lowBeta_values, [waveDict['lowBeta']]); | |
highBeta_values = np.append(highBeta_values, [waveDict['highBeta']]); | |
theta_values = np.append(theta_values, [waveDict['theta']]); | |
lowAlpha_values = np.append(lowAlpha_values, [waveDict['lowAlpha']]); | |
attention_values = np.append(attention_values, [eSenseDict['attention']]); | |
meditation_values = np.append(meditation_values, [eSenseDict['meditation']]); | |
print (outputstr); | |
if outfile!="null": | |
outfptr.write(outputstr+"\n"); | |
person_name = input('Enter the name of the person: ') | |
blink_label = input('Enter left or right eye blink(1 for left, 2 for right): ') | |
time_starting = input('When does TGC start: ') | |
lefty_righty = input('Is the person left-handed or right-handed: ') | |
time_blinking = input('The time of the blink: ') | |
# Data Recorded for a single person | |
data_row = pd.DataFrame({'Name': person_name, 'attention': [attention_values], 'meditation': [meditation_values], 'delta': [delta_values], 'theta': [theta_values], 'lowAlpha': [lowAlpha_values], 'highAlpha': [highAlpha_values], 'lowBeta': [lowBeta_values], 'highBeta': [highBeta_values], | |
'lowGamma':[lowGamma_values] , 'highGamma': [highGamma_values], 'blinkStrength': [blinkStrength_values], 'time': [time_array], 'LOR': blink_label}) | |
# Reading the data stored till now | |
dataset = pd.read_csv('data_eeg.csv') | |
from numpy import nan as Nan | |
dataset = dataset.append(pd.Series([blink_label, person_name, [attention_values], [blinkStrength_values], [delta_values] | |
, [highAlpha_values], [highBeta_values], [highGamma_values], [lowAlpha_values], [lowBeta_values], [lowGamma_values], [meditation_values], | |
[theta_values], [time_array], time_starting, lefty_righty, time_blinking], index=['LOR', 'Name', 'attention', 'blinkStrength', 'delta', 'highAlpha', 'highBeta', 'highGamma', 'lowAlpha', 'lowBeta', 'lowGamma', 'meditation', 'theta', 'time', 'time_start', 'LTYRTY', 'time_blink']), ignore_index = True) | |
#Appending and storing the data in the same csv | |
#dataset.append(data_row) | |
dataset.to_csv('data_eeg.csv') | |
tn.close(); | |
#outfptr.close(); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I'm using another single electrode FT$S mind link EEG Headband, is it any method to receive live raw EEG data from it