Created
June 6, 2012 14:02
-
-
Save MgaMPKAy/2882040 to your computer and use it in GitHub Desktop.
code from The Craft of Functional Programing, chapter 19
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import System.IO | |
import Prelude hiding (lookup) | |
while test action = do | |
res <- test | |
if res | |
then do action >> while test action | |
else return () | |
copy = while (do {x <- isEOF; return (not x)}) (getLine >>= putStr) | |
copy2 = do | |
res <- isEOF | |
if (not res) | |
then getLine >>= (\x -> if null x then return () else putStrLn x >> copy2) | |
else return () | |
sumInt = do | |
x <- fmap read getLine | |
if (x == 0) | |
then return 0 | |
else do | |
y <- sumInt | |
return $ x + y | |
errorCatch = do | |
catch (readFile "Non-exixt-file") (\e -> return "n") | |
data Id a = Id a | |
instance Monad Id where | |
return = Id | |
(Id a) >>= f = f a | |
data Tree a = Nil | |
| Node a (Tree a) (Tree a) | |
sumTree Nil = 0 | |
sumTree (Node a t1 t2) = sumTree t1 + sumTree t2 + a | |
sumTreeSt :: (Monad m) => Tree Int -> m Int | |
sumTreeSt Nil = return 0 | |
sumTreeSt (Node a t1 t2) = do | |
n1 <- sumTreeSt t1 | |
n2 <- sumTreeSt t2 | |
return (a + n1 + n2) | |
runId (Id a) = a | |
{-- utilze state monad --} | |
numTree :: Eq a => Tree a -> Tree Int | |
numTree = extract . numberTree | |
numberTree :: Eq a => Tree a -> State a (Tree Int) | |
numberTree Nil = return Nil | |
numberTree (Node x t1 t2) = do | |
num <- numberNode x | |
nt1 <- numberTree t1 | |
nt2 <- numberTree t2 | |
return (Node num nt1 nt2) | |
numberNode :: Eq a => a -> State a Int | |
numberNode x = State (nNode x) | |
nNode :: Eq a => a -> (Table a -> (Table a, Int)) | |
nNode x table | |
| x `elem` table = (table, lookup x table) | |
| otherwise = (table ++ [x], length table) | |
type Table a = [a] | |
lookup :: Eq a => a -> Table a -> Int | |
lookup x [] = 0 | |
lookup x (y:ys) | |
| x == y = 1 | |
| otherwise = 1 + lookup x ys | |
data State a b = State (Table a -> (Table a, b)) | |
extract :: State a b -> b | |
extract (State st) = snd (st []) | |
instance Monad (State a) where | |
return x = State $ (\tab -> (tab, x)) | |
(State st) >>= f = | |
State $ \tab -> | |
let (newTab, y) = st tab | |
(State trans) = f y | |
in trans newTab |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment