Created
March 15, 2023 08:02
-
-
Save MichelNivard/bb16969446d84826a5f13efb07f36154 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from torch.utils.data import Dataset, DataLoader | |
from transformers import GPT2Tokenizer, GPT2LMHeadModel, TextDataset, DataCollatorForLanguageModeling, Trainer, TrainingArguments | |
# Set the path to the text file to fine-tune on | |
path_to_file = "path/to/text/file.txt" | |
# Load the tokenizer and model | |
tokenizer = GPT2Tokenizer.from_pretrained('gpt2') | |
model = GPT2LMHeadModel.from_pretrained('gpt2') | |
# Load the text dataset and collator | |
dataset = TextDataset( | |
tokenizer=tokenizer, | |
file_path=path_to_file, | |
block_size=128, | |
) | |
data_collator = DataCollatorForLanguageModeling( | |
tokenizer=tokenizer, | |
mlm=False, | |
) | |
# Define the training arguments | |
training_args = TrainingArguments( | |
output_dir='./results', | |
num_train_epochs=1, | |
per_device_train_batch_size=16, | |
per_device_eval_batch_size=32, | |
logging_steps=5000, | |
save_steps=10000, | |
evaluation_strategy='steps', | |
eval_steps=10000, | |
save_total_limit=2, | |
learning_rate=5e-5, | |
warmup_steps=5000, | |
fp16=True, | |
) | |
# Define the trainer | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=dataset, | |
data_collator=data_collator, | |
) | |
# Fine-tune the model | |
trainer.train() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment