Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Select an option

  • Save MihailCosmin/affa6b1b71b43787e9228c25fe15aeba to your computer and use it in GitHub Desktop.

Select an option

Save MihailCosmin/affa6b1b71b43787e9228c25fe15aeba to your computer and use it in GitHub Desktop.
Instructions for CUDA v11.8 and cuDNN 8.7 installation on Ubuntu 22.04 for PyTorch 2.0.0
#!/bin/bash
### steps ####
# verify the system has a cuda-capable gpu
# download and install the nvidia cuda toolkit and cudnn
# setup environmental variables
# verify the installation
###
### to verify your gpu is cuda enable check
lspci | grep -i nvidia
### If you have previous installation remove it first.
sudo apt purge nvidia* -y
sudo apt remove nvidia-* -y
sudo rm /etc/apt/sources.list.d/cuda*
sudo apt autoremove -y && sudo apt autoclean -y
sudo rm -rf /usr/local/cuda*
# system update
sudo apt update && sudo apt upgrade -y
# install other import packages
sudo apt install g++ freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libglu1-mesa libglu1-mesa-dev
# first get the PPA repository driver
sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt update
# find recommended driver versions for you
ubuntu-drivers devices
# install nvidia driver with dependencies
sudo apt install libnvidia-common-515 libnvidia-gl-515 nvidia-driver-515 -y
# reboot
sudo reboot now
# verify that the following command works
nvidia-smi
sudo wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-ubuntu2204.pin
sudo mv cuda-ubuntu2204.pin /etc/apt/preferences.d/cuda-repository-pin-600
sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/3bf863cc.pub
sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/ /"
# Update and upgrade
sudo apt update && sudo apt upgrade -y
# installing CUDA-11.8
sudo apt install cuda-11-8 -y
# setup your paths
echo 'export PATH=/usr/local/cuda-11.8/bin:$PATH' >> ~/.bashrc
echo 'export LD_LIBRARY_PATH=/usr/local/cuda-11.8/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc
source ~/.bashrc
sudo ldconfig
# install cuDNN v11.8
# First register here: https://developer.nvidia.com/developer-program/signup
CUDNN_TAR_FILE="cudnn-linux-x86_64-8.7.0.84_cuda11-archive.tar.xz"
sudo wget https://developer.download.nvidia.com/compute/redist/cudnn/v8.7.0/local_installers/11.8/cudnn-linux-x86_64-8.7.0.84_cuda11-archive.tar.xz
sudo tar -xvf ${CUDNN_TAR_FILE}
sudo mv cudnn-linux-x86_64-8.7.0.84_cuda11-archive cuda
# copy the following files into the cuda toolkit directory.
sudo cp -P cuda/include/cudnn.h /usr/local/cuda-11.8/include
sudo cp -P cuda/lib/libcudnn* /usr/local/cuda-11.8/lib64/
sudo chmod a+r /usr/local/cuda-11.8/lib64/libcudnn*
# Finally, to verify the installation, check
nvidia-smi
nvcc -V
# install Pytorch (an open source machine learning framework)
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
@ndhoang93
Copy link

For NVIDIA 50 Series 5060 - 5060 Ti - 5070 - 5070 Ti only the open versions of the drivers are supported.

When you install CUDA Toolkit via sudo apt install cuda-11-8 -y, it will also install the latest non-open driver which will conflict your driver installation. I edited the suggestion to be compatible with RTX 50 series:

GPU Driver - CUDA - cuDNN

Install the GPU Drivers

sudo apt purge nvidia* -y

sudo apt remove nvidia-* -y

sudo rm /etc/apt/sources.list.d/cuda*

sudo apt autoremove -y && sudo apt autoclean -y

sudo rm -rf /usr/local/cuda*

sudo apt update && sudo apt upgrade -y

sudo apt install g++ freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libglu1-mesa libglu1-mesa-dev

sudo add-apt-repository ppa:graphics-drivers/ppa

sudo apt update

ubuntu-drivers devices

sudo apt install libnvidia-common-@@@ libnvidia-gl-@@@ nvidia-driver-@@@-open -y

I used 575 for my GPU.

sudo reboot now

Verify Driver Installation

nvidia-smi

Install CUDA Toolkit

wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run

sudo sh cuda_11.8.0_520.61.05_linux.run --toolkit --silent --override

Add CUDA Environment Variables

echo 'export PATH=/usr/local/cuda-11.8/bin:$PATH' >> ~/.bashrc

echo 'export LD_LIBRARY_PATH=/usr/local/cuda-11.8/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc

source ~/.bashrc

Download cuDNN

wget https://developer.download.nvidia.com/compute/cudnn/redist/cudnn/linux-x86_64/cudnn-linux-x86_64-8.8.1.3_cuda11-archive.tar.xz

sudo tar -xvf cudnn-linux-x86_64-8.8.1.3_cuda11-archive.tar.xz

sudo mv cudnn-linux-x86_64-8.8.1.3_cuda11-archive cuda

Put cuDNN into CUDA files

sudo cp -P cuda/include/cudnn.h /usr/local/cuda-11.8/include

sudo cp -P cuda/lib/libcudnn* /usr/local/cuda-11.8/lib64/

sudo chmod a+r /usr/local/cuda-11.8/lib64/libcudnn*

I hope this helps let me know if you are having any troubles.

It worked with RTX 3090 on Ubuntu 22.04. Thanks, bro!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment