Last active
April 18, 2023 21:48
-
-
Save MilesCranmer/1fb1d00c3fd0edccbd964220a72d97f5 to your computer and use it in GitHub Desktop.
Minimal multi-headed self-attention
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
using Flux | |
using Fluxperimental: @compact | |
nf = 10 | |
nb = 32 | |
nt = 100 | |
d_attn = 64 | |
d_value = 128 | |
d_head = 16 | |
d_out = 256 | |
X = randn(Float32, nf, nt, nb) | |
# X: (feature, time, batch) | |
# Minimal: | |
attn(i,o,a,dv,H)=@compact(out=Dense(H*dv=>o),heads=[@compact(D=l->Dense(i=>l),K=D(a),V=D(dv),Q=D(a))do x;k,v,q=K(x),V(x),Q(x);x=sum(k.*q,dims=1)./√a;softmax(x,dims=2).*v;end;for _∈1:H])do x;vcat([h(x) for h∈heads]...)|>out;end | |
# Expanded: | |
function multihead_self_attention(num_features, num_out, d_attn, d_value, num_heads) | |
@compact( | |
out = Dense(num_heads * d_value => num_out), | |
heads = [ | |
@compact( | |
K = Dense(num_features => d_attn), | |
V = Dense(num_features => d_value), | |
Q = Dense(num_features => d_attn) | |
) do x | |
k, v, q = K(x), V(x), Q(x) | |
x = sum(k .* q; dims=1) ./ sqrt(d_attn) | |
softmax(x; dims=2) .* v | |
end for _ in 1:num_heads | |
] | |
) do x | |
out(vcat([h(x) for h in heads]...)) | |
end | |
end | |
attn(nf, d_out, d_attn, d_value, d_head)(X) | |
multihead_self_attention(nf, d_out, d_attn, d_value, d_head)(X) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment