Last active
October 17, 2020 04:35
-
-
Save MilesCranmer/ee64614f3e8d9fcd6368e75e2fd86cc9 to your computer and use it in GitHub Desktop.
Analytic Approximation of log(1+erf(x)) for x in [-10, -5]. Uses PySR: https://pysr.readthedocs.io/, mpmath: http://mpmath.org/
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import numpy as np | |
| from mpmath import mp, mpmathify | |
| from pysr import * | |
| #Set precision to 200 decimal places: | |
| mp.dps = 200 | |
| x = np.linspace(-10, -5, num=300) | |
| #High precision calculation: | |
| y = np.array([float(mp.log(1+mp.erf(mpmathify(xi)))) for xi in x]) | |
| # Symbolic regression | |
| equations = pysr(x[:, None], y, | |
| procs=40, # Change procs=40 to the number of cores on your system. | |
| variable_names=['x'], #optional; for printing | |
| unary_operators=["exp", "logm", "sqrtm", "neg"], | |
| binary_operators=["plus", "sub", "mult", "div", 'pow'], | |
| # Fix max complexity of some operator arguments, for readability: | |
| constraints={'exp': 7, 'logm': 7, 'sqrtm': 7, 'pow': (7, 3)}, | |
| useFrequency=True, maxsize=40, niterations=10000 #hyperparams | |
| ) | |
| # This will print several analytic continuations of log(1+erf(x)) to small x. | |
| # Hit <ctl-c> after you are satisfied. | |
| equations = get_hof() | |
| print(best(equations.iloc[-1:])) #Sorted by MSE, so select last row, and pretty-print it | |
| #-x**2 - 0.982152327897448*log(Abs(x)) - 0.6179907 | |
| print(best_tex(equations.iloc[-1:])) | |
| # - x^{2} - 0.982152327897448 \log{\left(\left|{x}\right| \right)} - 0.6179907 | |
| f = best_callable(equations.iloc[-1:]) | |
| print(f(-6)) | |
| # -38.378 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment