Created
December 10, 2018 15:31
-
-
Save Mirodil/a4ecb1f59e553e8bfa8e379932ecf28d to your computer and use it in GitHub Desktop.
PyTorch Learning Rate Finder
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def find_learning_rate(model, data_loader, criterion, lr:tuple=(1e-7, 1), epochs:int=1): | |
history = [] | |
min_lr, max_lr = lr | |
num_batches = epochs * len(data_loader) | |
last_avg_loss, i, beta = 0, 0, 0.98 | |
# preserve initial state | |
initial_weights = './temp.model' | |
torch.save(model.state_dict(), initial_weights) | |
optimizer = Adam(model.parameters(), lr=min_lr) | |
scheduler = LambdaLR(optimizer, lr_lambda=lambda n: (max_lr/min_lr) ** (n/num_batches)) | |
model.train() | |
for epoch_idx in range(epochs): | |
progress_bar = tqdm_notebook(data_loader, leave=False) | |
for batch_idx, (x, y) in enumerate(progress_bar): | |
i += 1 | |
scheduler.step() | |
optimizer.zero_grad() | |
output = model(x) | |
loss = criterion(output, y) | |
loss.backward() | |
optimizer.step() | |
lr, *_ = scheduler.get_lr() | |
# smooth loss | |
last_avg_loss = beta * last_avg_loss + (1 - beta) * loss.item() | |
smooth_loss = last_avg_loss / (1 - beta ** i) | |
history.append((lr, smooth_loss)) | |
if lr >= max_lr: | |
break | |
progress_bar.close() | |
# restore initial state | |
model.load_state_dict(torch.load(initial_weights)) | |
return np.array(history, dtype=np.float16) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment