Skip to content

Instantly share code, notes, and snippets.

@MishraKhushbu
Created June 29, 2017 05:34
Show Gist options
  • Save MishraKhushbu/b0d065556e986e5d8858850a113e4a45 to your computer and use it in GitHub Desktop.
Save MishraKhushbu/b0d065556e986e5d8858850a113e4a45 to your computer and use it in GitHub Desktop.
#!/usr/bin/python -tt
# Copyright 2010 Google Inc.
# Licensed under the Apache License, Version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
# Google's Python Class
# http://code.google.com/edu/languages/google-python-class/
# Additional basic list exercises
# D. Given a list of numbers, return a list where
# all adjacent == elements have been reduced to a single element,
# so [1, 2, 2, 3] returns [1, 2, 3]. You may create a new list or
# modify the passed in list.
def remove_adjacent(nums):
a= []
i= 0
for i in range(len(nums)):
if i < (len(nums)-1):
if nums[i] != nums[i+1]:
a.append(nums[i])
else:
a.append(nums[i])
print a
return
# E. Given two lists sorted in increasing order, create and return a merged
# list of all the elements in sorted order. You may modify the passed in lists.
# Ideally, the solution should work in "linear" time, making a single
# pass of both lists.
def linear_merge(list1, list2):
list3 = list1+list2
list4 = sorted(list3)
print list4
return
# Note: the solution above is kind of cute, but unforunately list.pop(0)
# is not constant time with the standard python list implementation, so
# the above is not strictly linear time.
# An alternate approach uses pop(-1) to remove the endmost elements
# from each list, building a solution list which is backwards.
# Then use reversed() to put the result back in the correct order. That
# solution works in linear time, but is more ugly.
# Simple provided test() function used in main() to print
# what each function returns vs. what it's supposed to return.
def test(got, expected):
if got == expected:
prefix = ' OK '
else:
prefix = ' X '
print '%s got: %s expected: %s' % (prefix, repr(got), repr(expected))
# Calls the above functions with interesting inputs.
def main():
print 'remove_adjacent'
test(remove_adjacent([1, 2, 2, 3]), [1, 2, 3])
test(remove_adjacent([2, 2, 3, 3, 3]), [2, 3])
test(remove_adjacent([]), [])
print
print 'linear_merge'
test(linear_merge(['aa', 'xx', 'zz'], ['bb', 'cc']),
['aa', 'bb', 'cc', 'xx', 'zz'])
test(linear_merge(['aa', 'xx'], ['bb', 'cc', 'zz']),
['aa', 'bb', 'cc', 'xx', 'zz'])
test(linear_merge(['aa', 'aa'], ['aa', 'bb', 'bb']),
['aa', 'aa', 'aa', 'bb', 'bb'])
if __name__ == '__main__':
main()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment