Created
June 5, 2025 22:14
-
-
Save Mister-Odd/0f0dd7117401ec7414aa0805d2e112b6 to your computer and use it in GitHub Desktop.
Enable Boolean clauses in the Elm frontend for Elasticsearch
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
### This is 100% Copilot responses to my queries - Expect lot's of errors and random WTF moments ### | |
### Copilot was given my fork of nixos-search to evaluate for it's replies ### | |
### Enable Boolean clauses in the Elm frontend for Elasticsearch ### | |
# Extend the Elm model to represent Boolean logic. | |
# Update the query encoder to generate the appropriate JSON for Elasticsearch. | |
# Adjust the update logic if needed to support new query types. | |
### Extend the Elm Model ### | |
# In the Search.elm, define a new type to represent Boolean clauses: | |
type BoolClause | |
= Must MatchClause | |
| Should MatchClause | |
| MustNot MatchClause | |
| Filter MatchClause | |
type alias MatchClause = | |
{ field : String | |
, value : String | |
} | |
# Update the Model to include a list of these clauses: | |
type alias Model = | |
{ ... | |
, boolClauses : List BoolClause | |
} | |
# Update the JSON Encoder | |
import Json.Encode exposing (..) | |
encodeBoolClause : BoolClause -> ( String, Value ) | |
encodeBoolClause clause = | |
case clause of | |
Must match -> | |
( "must", list [ encodeMatch match ] ) | |
Should match -> | |
( "should", list [ encodeMatch match ] ) | |
MustNot match -> | |
( "must_not", list [ encodeMatch match ] ) | |
Filter match -> | |
( "filter", list [ encodeMatch match ] ) | |
encodeMatch : MatchClause -> Value | |
encodeMatch match = | |
object | |
[ ( "match", object [ ( match.field, string match.value ) ] ) ] | |
### Add a function to encode the BoolClause list into a JSON object that Elasticsearch understands ### | |
# In the main query encoder: | |
encodeBoolQuery : List BoolClause -> Value | |
encodeBoolQuery clauses = | |
let | |
grouped = | |
Dict.fromListWith (++) (List.map (\c -> let (k, v) = encodeBoolClause c in (k, [v])) clauses) | |
in | |
object | |
[ ( "query" | |
, object | |
[ ( "bool" | |
, object (Dict.toList (Dict.map (\_ vs -> list vs) grouped)) | |
) | |
] | |
) | |
] | |
# Update the View and Update Logic | |
### Allow users to add clauses via the UI.### | |
# For example, buttons to add a Must, Should, etc., clause. | |
# In the update function, handle those actions by appending to model.boolClauses. | |
### To build a UI in Elm that allows users to add Boolean clauses (must, should, must_not, filter) to an Elasticsearch query ### | |
Define messages for user actions. | |
Update the model to track input fields. | |
Create view elements for input and buttons. | |
Handle updates to modify the model and trigger query encoding | |
# Define Messages | |
# Add these to the Msg type: | |
type Msg | |
= UpdateField String | |
| UpdateValue String | |
| AddClause String | |
# Extend the Model | |
# Add temporary fields for user input: | |
type alias Model = | |
{ ... | |
, currentField : String | |
, currentValue : String | |
, boolClauses : List BoolClause | |
} | |
# Initialize them in the init function: | |
init : Model | |
init = | |
{ ... | |
, currentField = "" | |
, currentValue = "" | |
, boolClauses = [] | |
} | |
### Create the View ### | |
# Add a form to input field/value and buttons to add clauses: | |
view : Model -> Html Msg | |
view model = | |
div [] | |
[ input [ placeholder "Field", onInput UpdateField ] [] | |
, input [ placeholder "Value", onInput UpdateValue ] [] | |
, button [ onClick (AddClause "must") ] [ text "Add MUST" ] | |
, button [ onClick (AddClause "should") ] [ text "Add SHOULD" ] | |
, button [ onClick (AddClause "must_not") ] [ text "Add MUST NOT" ] | |
, button [ onClick (AddClause "filter") ] [ text "Add FILTER" ] | |
, div [] (List.map viewClause model.boolClauses) | |
] | |
# Add a helper to display added clauses: | |
viewClause : BoolClause -> Html msg | |
viewClause clause = | |
case clause of | |
Must m -> text ("MUST: " ++ m.field ++ " = " ++ m.value) | |
Should m -> text ("SHOULD: " ++ m.field ++ " = " ++ m.value) | |
MustNot m -> text ("MUST NOT: " ++ m.field ++ " = " ++ m.value) | |
Filter m -> text ("FILTER: " ++ m.field ++ " = " ++ m.value) | |
### Handle Updates ### | |
# Update the update function: | |
update : Msg -> Model -> ( Model, Cmd Msg ) | |
update msg model = | |
case msg of | |
UpdateField field -> | |
( { model | currentField = field }, Cmd.none ) | |
UpdateValue value -> | |
( { model | currentValue = value }, Cmd.none ) | |
AddClause clauseType -> | |
let | |
match = { field = model.currentField, value = model.currentValue } | |
newClause = | |
case clauseType of | |
"must" -> Must match | |
"should" -> Should match | |
"must_not" -> MustNot match | |
"filter" -> Filter match | |
_ -> Must match | |
in | |
( { model | |
| boolClauses = model.boolClauses ++ [ newClause ] | |
, currentField = "" | |
, currentValue = "" | |
} | |
, Cmd.none | |
) | |
### To integrate the updated Boolean clause UI with the Elasticsearch backend ### | |
Encode the boolClauses into a JSON query. | |
Send the query to the backend using an HTTP request. | |
Handle the response and update the model with results. | |
# Encode the Query | |
# Use the encodeBoolQuery function (from earlier). Use it to convert model.boolClauses into a JSON payload: | |
import Json.Encode exposing (encode) | |
sendQuery : Model -> Cmd Msg | |
sendQuery model = | |
let | |
body = | |
encode 0 (encodeBoolQuery model.boolClauses) | |
in | |
Http.post | |
{ url = "/the-elasticsearch-endpoint" | |
, body = Http.jsonBody (encodeBoolQuery model.boolClauses) | |
, expect = Http.expectJson GotSearchResults searchResultsDecoder | |
} | |
#Replace "/the-elasticsearch-endpoint" with the actual URL the backend exposes for search. | |
### Define the Response Decoder ### | |
# Assuming the Elasticsearch response includes a list of hits: | |
type alias SearchResult = | |
{ title : String | |
, snippet : String | |
} | |
searchResultsDecoder : Decoder (List SearchResult) | |
searchResultsDecoder = | |
Decode.at [ "hits", "hits" ] | |
(Decode.list | |
(Decode.map2 SearchResult | |
(Decode.at [ "_source", "title" ] Decode.string) | |
(Decode.at [ "_source", "snippet" ] Decode.string) | |
) | |
) | |
### Add a Message and Update Logic ### | |
# Extend the Msg type: | |
type Msg | |
= ... | |
| GotSearchResults (Result Http.Error (List SearchResult)) | |
# Update the update function: | |
update msg model = | |
case msg of | |
... | |
AddClause clauseType -> | |
let | |
... | |
in | |
( updatedModel, sendQuery updatedModel ) | |
GotSearchResults result -> | |
case result of | |
Ok results -> | |
( { model | searchResults = results }, Cmd.none ) | |
Err _ -> | |
( model, Cmd.none ) -- You can add error handling here | |
### Display the Results ### | |
# Add a searchResults field to the Model: | |
type alias Model = | |
{ ... | |
, searchResults : List SearchResult | |
} | |
# Initialize it as an empty list, and render it in the view: | |
view model = | |
div [] | |
[ ... | |
, div [] (List.map viewResult model.searchResults) | |
] | |
viewResult : SearchResult -> Html msg | |
viewResult result = | |
div [] | |
[ h3 [] [ text result.title ] | |
, p [] [ text result.snippet ] | |
] | |
### Define the Elasticsearch schema and integrate it with the Elm frontend ### | |
# Elasticsearch Document Schema (for Nix Packages) | |
# Example of each document in the Elasticsearch index might look like: | |
{ | |
"name": "firefox", | |
"version": "123.0", | |
"description": "A fast, privacy-focused web browser", | |
"homepage": "https://www.mozilla.org/firefox", | |
"source": "https://github.com/mozilla/firefox", | |
"programs": ["firefox"], | |
"install": { | |
"nix-shell": "nix-shell -p firefox", | |
"nixos": "services.firefox.enable = true;", | |
"nix-env": "nix-env -iA nixos.firefox" | |
}, | |
"license": "MPL-2.0", | |
"maintainers": ["alice", "bob"], | |
"platforms": ["x86_64-linux", "aarch64-linux"] | |
} | |
### Search Fields ### | |
# To search by: | |
# Name (e.g., "firefox") | |
# Version (e.g., "123.0") | |
# The Elasticsearch query should look like this: | |
{ | |
"query": { | |
"bool": { | |
"must": [ | |
{ "match": { "name": "firefox" } }, | |
{ "match": { "version": "123.0" } } | |
] | |
} | |
} | |
} | |
### Elm Decoder for Search Results ### | |
# Here’s how to decode the response in Elm: | |
type alias SearchResult = | |
{ name : String | |
, version : String | |
, description : String | |
, homepage : String | |
, license : String | |
} | |
searchResultsDecoder : Decoder (List SearchResult) | |
searchResultsDecoder = | |
Decode.at [ "hits", "hits" ] | |
(Decode.list | |
(Decode.map5 SearchResult | |
(Decode.at [ "_source", "name" ] Decode.string) | |
(Decode.at [ "_source", "version" ] Decode.string) | |
(Decode.at [ "_source", "description" ] Decode.string) | |
(Decode.at [ "_source", "homepage" ] Decode.string) | |
(Decode.at [ "_source", "license" ] Decode.string) | |
) | |
) | |
# It's posible to expand this decoder to include maintainers, platforms, and install instructions if needed. | |
# Here’s a sample Elasticsearch index mapping tailored to the Nix packages schema. | |
# This mapping ensures that fields like name and version are searchable, while others like platforms and maintainers are stored appropriately for filtering or display. | |
### Elasticsearch Index Mapping for Nix Packages ### | |
PUT /nixpkgs-packages | |
{ | |
"mappings": { | |
"properties": { | |
"name": { | |
"type": "text", | |
"fields": { | |
"keyword": { "type": "keyword" } | |
} | |
}, | |
"version": { | |
"type": "text", | |
"fields": { | |
"keyword": { "type": "keyword" } | |
} | |
}, | |
"description": { | |
"type": "text" | |
}, | |
"homepage": { | |
"type": "keyword" | |
}, | |
"source": { | |
"type": "keyword" | |
}, | |
"programs": { | |
"type": "keyword" | |
}, | |
"install": { | |
"properties": { | |
"nix-shell": { "type": "text" }, | |
" } | |
} | |
}, | |
"license": { | |
"type": "keyword" | |
}, | |
"maintainers": { | |
"type": "keyword" | |
}, | |
"platforms": { | |
"type": "keyword" | |
} | |
} | |
} | |
} | |
### Notes ### | |
# text is used for full-text search (e.g., name, description). | |
# keyword is used for exact matches and aggregations (e.g., license, platforms). | |
# The fields.keyword subfield allows you to do both full-text and exact match queries on name and version. | |
### A script to bulk index the Nix package data into this schema ### | |
# Bulk index the Nix package data into Elasticsearch: | |
# Prepare the data in the Elasticsearch Bulk API format. | |
# Use a script to send the data to the Elasticsearch instance. | |
# Format The Data | |
# Each document should be preceded by a metadata line like this: | |
{ "index": { "_index": "nixpkgs-packages" } } | |
{ "name": "firefox", "version": "123.0", ... } | |
{ "index": { "_index": "nixpkgs-packages" } } | |
{ "name": "vim", "version": "9.0", ... } | |
# Python Script to Bulk Index | |
# Here's a Python script that: | |
# Reads a JSON file with the package data. | |
# Converts it to the correct bulk format. | |
# Sends it to the Elasticsearch instance. | |
import json | |
import requests | |
# Load the JSON file containing Nix package data | |
with open('nix_packages.json', 'r') as file: | |
packages = json.load(file) | |
# Prepare the bulk indexing payload | |
bulk_payload = "" | |
for package in packages: | |
action = json.dumps({ "index": { "_index": "nixpkgs-packages" } }) | |
data = json.dumps(package) | |
bulk_payload += f"{action}\n{data}\n" | |
# Send the bulk request to Elasticsearch | |
response = requests.post( | |
'http://localhost:9200/_bulk', | |
headers={ 'Content-Type': 'application/x-ndjson' }, | |
data=bulk_payload | |
) | |
### To test the full query flow from Elm to Elasticsearch ### | |
# The Elm frontend correctly builds and sends the query. | |
# The Elasticsearch backend receives and processes the query. | |
# The response is correctly decoded and displayed in the UI. | |
# Test the Elm Query Encoder | |
# In Elm, log the encoded query before sending it: | |
# This helps to verify that the JSON structure matches what Elasticsearch expects. | |
Debug.log "Encoded Query" (encode 2 (encodeBoolQuery model.boolClauses)) | |
# Use browser dev tools or a proxy like mitmproxy or Charles Proxy to inspect the actual HTTP request sent from Elm. | |
#Check: | |
# URL is correct (e.g., http://localhost:9200/nixpkgs-packages/_search) | |
# Method is POST | |
# Headers include Content-Type: application/json | |
# Body matches the expected Elasticsearch query | |
# To test Elasticsearch directly, use curl or Postman to test the query manually: | |
curl -X POST "http://localhost:9200/nixpkgs-packages/_search" \ | |
-H "Content-Type: application/json" \ | |
-d '{ | |
"query": { | |
"bool": { | |
"must": [ | |
{ "match": { "name": "firefox" } }, | |
{ "match": { "version": "123.0" } } | |
] | |
} | |
} | |
}' | |
# If this returns results, the index and mapping are working. | |
# Validate Elm Decoder | |
# In Elm, log the decoded results: | |
Debug.log "Search Results" model.searchResults | |
# If decoding fails, check the structure of the Elasticsearch response and adjust the decoder accordingly. | |
### Troubleshooting Tips ### | |
# If there are no results, try simplifying the query (e.g., just match on name). | |
# If decoding fails, use Http.expectString temporarily to inspect the raw response. | |
# Make sure CORS is enabled on the Elasticsearch server if the frontend is served from a different origin. | |
### Mock Elasticsearch response to use to test the Elm decoder ### | |
#This simulates what Elasticsearch would return for a query on the nixpkgs-packages index: | |
{ | |
"took": 5, | |
"timed_out": false, | |
"_shards": { | |
"total": 1, | |
"successful": 1, | |
"skipped": 0, | |
"failed": 0 | |
}, | |
"hits": { | |
"total": { | |
"value": 1, | |
"relation": "eq" | |
}, | |
"max_score": 1.0, | |
"hits": [ | |
{ | |
"_index": "nixpkgs-packages", | |
"_id": "firefox-123.0", | |
"_score": 1.0, | |
"_source": { | |
"name": "firefox", | |
"version": "123.0", | |
"description": "A fast, privacy-focused web browser", | |
"homepage": "https://www.mozilla.org/firefox", | |
"license": "MPL-2.0" | |
} | |
} | |
] | |
} | |
} | |
# How to Use This | |
# Save it as a file (e.g., mock-response.json). | |
# In Elm, temporarily replace the Http.expectJson with Http.expectString to log the raw response. | |
# Use a local server or mock HTTP library to serve this file when testing. | |
### Mock HTTP server script (e.g., in Python or Node.js) to serve this JSON locally for testing ### | |
import http.server | |
import socketserver | |
import json | |
PORT = 8000 | |
class MockElasticsearchHandler(http.server.SimpleHTTPRequestHandler): | |
def do_GET(self): | |
if self.path == '/mock-response.json': | |
self.send_response(200) | |
self.send_header('Content-type', 'application/json') | |
self.end_headers() | |
with open('mock-response.json', 'r') as file: | |
response_content = file.read() | |
self.wfile.write(response_content.encode()) | |
else: | |
self.send_response(404) | |
self.end_headers() | |
Handler = MockElasticsearchHandler | |
with socketserver.TCPServer(("", PORT), Handler) as httpd: | |
print(f"Serving at port {PORT}") | |
httpd.serve_forever() | |
### Inspection of the current repository shows a few areas to double-check ### | |
# 1. Frontend Query Construction (Elm) | |
# The file frontend/src/Search.elm appears to build queries manually. | |
# If adding Boolean logic, ensure the encodeBoolQuery function is correctly integrated and replaces any older query logic. | |
# 2. Backend Proxy or API Layer | |
# If the frontend is not querying Elasticsearch directly, there may be a backend proxy that transforms or filters requests. | |
# Check for any middleware that might strip or alter the query payload. | |
# 3. CORS Configuration | |
# If running the frontend separately from Elasticsearch, ensure CORS is enabled on the Elasticsearch server: | |
# 4. Index Name and Mapping | |
# Confirm that the index name used in the frontend matches the one in Elasticsearch (nixpkgs-packages or similar). | |
# Ensure the mapping supports the fields you're querying (name, version, etc.). | |
# 5. Data Availability | |
# If the queries return no results, verify that the data is actually indexed and matches the query terms. | |
# Try a simple match_all query to confirm data presence. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment