-
-
Save Mistobaan/bdc1d96d50f627acb74b5e19e6e13595 to your computer and use it in GitHub Desktop.
Merge base model and peft adapter and push it to HF hub
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Example usage: | |
# python merge_peft.py --base_model=meta-llama/Llama-2-7b-hf --peft_model=./qlora-out --hub_id=alpaca-qlora | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from peft import PeftModel | |
import torch | |
import argparse | |
def get_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--base_model", type=str) | |
parser.add_argument("--peft_model", type=str) | |
parser.add_argument("--hub_id", type=str) | |
return parser.parse_args() | |
def main(): | |
args = get_args() | |
print(f"[1/5] Loading base model: {args.base_model}") | |
base_model = AutoModelForCausalLM.from_pretrained( | |
args.base_model, | |
return_dict=True, | |
torch_dtype=torch.float16, | |
device_map="auto", | |
) | |
tokenizer = AutoTokenizer.from_pretrained(args.base_model) | |
print(f"[2/5] Loading adapter: {args.peft_model}") | |
model = PeftModel.from_pretrained(base_model, args.peft_model, device_map="auto") | |
print("[3/5] Merge base model and adapter") | |
model = model.merge_and_unload() | |
print(f"[4/5] Saving model and tokenizer in {args.hub_id}") | |
model.save_pretrained(f"{args.hub_id}") | |
tokenizer.save_pretrained(f"{args.hub_id}") | |
print(f"[5/5] Uploading to Hugging Face Hub: {args.hub_id}") | |
model.push_to_hub(f"{args.hub_id}", use_temp_dir=False) | |
tokenizer.push_to_hub(f"{args.hub_id}", use_temp_dir=False) | |
print("Merged model uploaded to Hugging Face Hub!") | |
if __name__ == "__main__" : | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment