Last active
September 30, 2021 17:46
-
-
Save Mizux/5d71f6be084bda75e2b98b19a1499e45 to your computer and use it in GitHub Desktop.
vrp with unload at duplicated depot...
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# This Python file uses the following encoding: utf-8 | |
# Copyright 2015 Tin Arm Engineering AB | |
# Copyright 2018 Google LLC | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Capacitated Vehicle Routing Problem (CVRP). | |
This is a sample using the routing library python wrapper to solve a CVRP | |
problem. | |
A description of the problem can be found here: | |
http://en.wikipedia.org/wiki/Vehicle_routing_problem. | |
Distances are in meters. | |
""" | |
from __future__ import print_function | |
import math | |
from six.moves import xrange | |
from ortools.constraint_solver import pywrapcp | |
from ortools.constraint_solver import routing_enums_pb2 | |
import numpy as np | |
###########################fde | |
# Problem Data Definition # | |
########################### | |
def create_data_model(): | |
"""Stores the data for the problem""" | |
data = {} | |
data['time_windows'] = [ | |
(0, 0), (0, 8000), (0, 8000), (0, 8000), # 0,1,2,3 | |
(0, 8000), | |
(0, 8000), | |
(0, 8000), | |
(0, 8000)] | |
#data['demands'] = [0, -50, -50, -50, 40, 10, 20, 30] | |
data['demands'] = [0, -50, -50, -50, 50, 50, 50, 50] | |
#data['demands_w'] = [0, -10, -10, -10, 3, 4, 6, 5] | |
data['demands_w'] = [0, -10, -10, -10, 8, 2, 4, 6] | |
#data['demands_w'] = [0, -50, -50, -50, 40, 10, 20, 30] | |
data['demands_h'] = [0, -10, -10, -10, 8, 2, 4, 6] | |
#data['demands_h'] = [0, -50, -50, -50, 40, 10, 20, 30] | |
data['demands_l'] = [0, -10, -10, -10, 8, 2, 4, 6] | |
#data['demands_l'] = [0, -50, -50, -50, 40, 10, 20, 30] | |
data['locations'] = [ | |
(51.14, 71.44), (51.14, 71.44), (51.14, 71.44), (51.14, 71.44), #0,1,2,3 | |
(51.14, 71.45), # 4 | |
(51.1467, 71.4583), #5 | |
(51.1053, 71.4404), #6 | |
(51.14, 71.42)] #7 | |
data['vehicle_capacity'] = 50 | |
data['vehicle_capacity_w'] = 10 | |
#data['vehicle_capacity_w'] = 50 | |
data['vehicle_capacity_h'] = 10 | |
#data['vehicle_capacity_h'] = 50 | |
data['vehicle_capacity_l'] = 10 | |
#data['vehicle_capacity_l'] = 50 | |
data['num_locations'] = 8 | |
data['time_per_demand_unit'] = 5 | |
data['num_vehicles'] = 1 | |
data['depot'] = 0 | |
data['number_of_depots'] = 4 | |
data['vehicle_speed'] = 83.33333333333333 | |
return data | |
####################### | |
# Problem Constraints # | |
####################### | |
def gps_distance(position_1, position_2): | |
lat1 = position_1[0] | |
lat2 = position_2[0] | |
lon1 = position_1[1] | |
lon2 = position_2[1] | |
R = 6378.137; # Radius of earth in KM | |
dLat = lat2 * math.pi / 180 - lat1 * math.pi / 180; | |
dLon = lon2 * math.pi / 180 - lon1 * math.pi / 180; | |
a = math.sin(dLat/2) * math.sin(dLat/2) + math.cos(lat1 * math.pi / 180) * math.cos(lat2 * math.pi / 180) * math.sin(dLon/2) * math.sin(dLon/2); | |
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a)); | |
d = R * c * 1000; # in meters | |
return d | |
def create_distance_evaluator(data): | |
"""Creates callback to return distance between points.""" | |
_distances = {} | |
# precompute distance between location to have distance callback in O(1) | |
for from_node in xrange(data["num_locations"]): | |
_distances[from_node] = {} | |
for to_node in xrange(data["num_locations"]): | |
if from_node == to_node: | |
_distances[from_node][to_node] = 0 | |
else: | |
_distances[from_node][to_node] = ( | |
gps_distance(data["locations"][from_node], | |
data["locations"][to_node])) | |
def distance_evaluator(from_node, to_node): | |
"""Returns the manhattan distance between the two nodes""" | |
return _distances[from_node][to_node] | |
return distance_evaluator | |
def create_demand_evaluator_dwhl(data, ind): | |
"""Creates callback to get demands at each location.""" | |
if ind == 0: | |
_demands = data["demands"] | |
elif ind == 1: | |
_demands = data["demands_w"] | |
elif ind == 2: | |
_demands = data["demands_h"] | |
elif ind == 3: | |
_demands = data["demands_l"] | |
def demand_evaluator(from_node, to_node): | |
"""Returns the demand of the current node""" | |
del to_node | |
return _demands[from_node] | |
print('Demand_{}: {}'.format(ind, _demands)) | |
return demand_evaluator | |
def add_capacity_constraints(routing, data, demand_evaluator, ind): | |
"""Adds capacity constraint""" | |
if ind == 0: | |
_vehicle_capacity = data["vehicle_capacity"] | |
elif ind == 1: | |
_vehicle_capacity = data["vehicle_capacity_w"] | |
elif ind == 2: | |
_vehicle_capacity = data["vehicle_capacity_h"] | |
elif ind == 3: | |
_vehicle_capacity = data["vehicle_capacity_l"] | |
capacity = 'Capacity_{}'.format(ind) | |
print('Vehicle Capacity_{}: {}'.format(ind, _vehicle_capacity)) | |
routing.AddDimension( | |
demand_evaluator, | |
_vehicle_capacity, # Null slack | |
_vehicle_capacity, | |
True, # start cumul to zero | |
capacity) | |
# Add Slack for reseting to zero unload depot nodes. | |
# e.g. vehicle with load 10/15 arrives at node 1 (depot unload) | |
# so we have CumulVar = 10(current load) + -15(unload) + 5(slack) = 0. | |
capacity_dimension = routing.GetDimensionOrDie(capacity) | |
#print('CapacityDimension: {}'.format(capacity_dimension)) | |
for node_index in [1, 2, 3]: | |
index = routing.NodeToIndex(node_index) | |
capacity_dimension.SlackVar(index).SetRange(0, _vehicle_capacity) | |
for node_index in [4, 5, 6, 7]: | |
index = routing.NodeToIndex(node_index) | |
capacity_dimension.SlackVar(index).SetRange(0, 0) | |
def add_disjunction(routing, data): | |
dodisjoint = 0 | |
if dodisjoint: | |
for node_index in [1, 2, 3]: | |
print('Depot NodeIndex: {}'.format(node_index)) | |
routing.AddDisjunction([node_index], 0) | |
penalty = 1000000 | |
for node_index in xrange(4, data["num_locations"]): | |
print('Location NodeIndex: {}'.format(node_index)) | |
routing.AddDisjunction([node_index], penalty) | |
def create_time_evaluator(data): | |
"""Creates callback to get total times between locations.""" | |
def service_time(data, node): | |
"""Gets the service time for the specified location.""" | |
if data["demands"][node] < 0: | |
return 0 | |
return data["demands"][node] * data["time_per_demand_unit"] | |
def travel_time(data, from_node, to_node): | |
"""Gets the travel times between two locations.""" | |
if from_node == to_node: | |
travel_time = 0 | |
else: | |
travel_time = gps_distance( | |
data["locations"][from_node], | |
data["locations"][to_node]) / data["vehicle_speed"] | |
return travel_time | |
_total_time = {} | |
# precompute total time to have time callback in O(1) | |
for from_node in xrange(data["num_locations"]): | |
_total_time[from_node] = {} | |
for to_node in xrange(data["num_locations"]): | |
if from_node == to_node: | |
_total_time[from_node][to_node] = 0 | |
else: | |
_total_time[from_node][to_node] = int( | |
service_time(data, from_node) + | |
travel_time(data, from_node, to_node)) | |
def time_evaluator(from_node, to_node): | |
"""Returns the total time between the two nodes""" | |
return _total_time[from_node][to_node] | |
return time_evaluator | |
def add_time_window_constraints(routing, data, time_evaluator): | |
"""Add Time windows constraint""" | |
time = 'Time' | |
horizon = 8000 # total | |
routing.AddDimension( | |
time_evaluator, | |
horizon, # allow waiting time | |
horizon, # maximum time per vehicle | |
False, # don't force start cumul to zero since we are giving TW to start nodes | |
time) | |
time_dimension = routing.GetDimensionOrDie(time) | |
# Add time window constraints for each location except depot | |
# and "copy" the slack var in the solution object (aka Assignment) to print it | |
for location_idx, time_window in enumerate(data["time_windows"]): | |
if location_idx == 0: | |
continue | |
index = routing.NodeToIndex(location_idx) | |
time_dimension.CumulVar(index).SetRange(time_window[0], time_window[1]) | |
routing.AddToAssignment(time_dimension.SlackVar(index)) | |
# Add time window constraints for each vehicle start node | |
# and "copy" the slack var in the solution object (aka Assignment) to print it | |
for vehicle_id in xrange(data["num_vehicles"]): | |
index = routing.Start(vehicle_id) | |
time_dimension.CumulVar(index).SetRange(data["time_windows"][0][0], | |
data["time_windows"][0][1]) | |
routing.AddToAssignment(time_dimension.SlackVar(index)) | |
# Warning: Slack var is not defined for vehicle's end node | |
#routing.AddToAssignment(time_dimension.SlackVar(self.routing.End(vehicle_id))) | |
########### | |
# Printer # | |
########### | |
def print_solution(data, routing, assignment): | |
"""Prints assignment on console""" | |
print('---------------------------') | |
print('Objective: {}'.format(assignment.ObjectiveValue())) | |
total_distance = 0 | |
total_load = 0 | |
total_time = 0 | |
capacity_dimension = routing.GetDimensionOrDie('Capacity_0') | |
time_dimension = routing.GetDimensionOrDie('Time') | |
dropped = [] | |
for order in xrange(0, routing.nodes()): | |
index = routing.NodeToIndex(order) | |
if assignment.Value(routing.NextVar(index)) == index: | |
dropped.append(order) | |
print('dropped orders: {}'.format(dropped)) | |
for vehicle_id in xrange(data["num_vehicles"]): | |
index = routing.Start(vehicle_id) | |
plan_output = 'Route for vehicle {}:\n'.format(vehicle_id) | |
distance = 0 | |
while not routing.IsEnd(index): | |
load_var = capacity_dimension.CumulVar(index) | |
time_var = time_dimension.CumulVar(index) | |
plan_output += ' {0} Load({1}) Time({2},{3}) ->'.format( | |
routing.IndexToNode(index), | |
assignment.Value(load_var), | |
assignment.Min(time_var), | |
assignment.Max(time_var)) | |
previous_index = index | |
index = assignment.Value(routing.NextVar(index)) | |
distance += routing.GetArcCostForVehicle(previous_index, index, | |
vehicle_id) | |
load_var = capacity_dimension.CumulVar(index) | |
time_var = time_dimension.CumulVar(index) | |
plan_output += ' {0} Load({1}) Time({2},{3})\n'.format( | |
routing.IndexToNode(index), | |
assignment.Value(load_var), | |
assignment.Min(time_var), | |
assignment.Max(time_var)) | |
plan_output += 'Distance of the route: {}m\n'.format(distance) | |
plan_output += 'Load of the route: {}\n'.format(assignment.Value(load_var)) | |
plan_output += 'Time of the route: {}\n'.format(assignment.Value(time_var)) | |
print(plan_output) | |
total_distance += distance | |
total_load += assignment.Value(load_var) | |
total_time += assignment.Value(time_var) | |
print('Total Distance of all routes: {}m'.format(total_distance)) | |
print('Total Load of all routes: {}'.format(total_load)) | |
print('Total Time of all routes: {}min'.format(total_time)) | |
######## | |
# Main # | |
######## | |
def main(): | |
"""Entry point of the program""" | |
# Instantiate the data problem. | |
data = create_data_model() | |
# Create Routing Model | |
routing = pywrapcp.RoutingModel( | |
data["num_locations"], | |
data["num_vehicles"], | |
data["depot"]) | |
# Define weight of each edge | |
distance_evaluator = create_distance_evaluator(data) | |
routing.SetArcCostEvaluatorOfAllVehicles(distance_evaluator) | |
# Add Capacity constraint | |
demand_evaluator = create_demand_evaluator_dwhl(data, 0) | |
add_capacity_constraints(routing, data, demand_evaluator, 0) | |
demand_evaluator_w = create_demand_evaluator_dwhl(data, 1) | |
add_capacity_constraints(routing, data, demand_evaluator_w, 1) | |
demand_evaluator_h = create_demand_evaluator_dwhl(data, 2) | |
add_capacity_constraints(routing, data, demand_evaluator_h, 2) | |
demand_evaluator_l = create_demand_evaluator_dwhl(data, 3) | |
add_capacity_constraints(routing, data, demand_evaluator_l, 3) | |
add_disjunction(routing, data) | |
# Add Time Window constraint | |
time_evaluator = create_time_evaluator(data) | |
add_time_window_constraints(routing, data, time_evaluator) | |
# Setting first solution heuristic (cheapest addition). | |
search_parameters = pywrapcp.RoutingModel.DefaultSearchParameters() | |
search_parameters.first_solution_strategy = ( | |
routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC) # pylint: disable=no-member | |
# Solve the problem. | |
assignment = routing.SolveWithParameters(search_parameters) | |
print_solution(data, routing, assignment) | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment