Skip to content

Instantly share code, notes, and snippets.

@Mizux
Created March 24, 2022 08:23
Show Gist options
  • Save Mizux/9963a9cf5efcf7d2e5819a38f060f9c0 to your computer and use it in GitHub Desktop.
Save Mizux/9963a9cf5efcf7d2e5819a38f060f9c0 to your computer and use it in GitHub Desktop.
vrp fairness
#!/usr/bin/env python3
from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp
def create_data_model():
"""Stores the data for the problem."""
data = {}
data['distance_matrix'] = [
[
0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354,
468, 776, 662
],
[
548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674,
1016, 868, 1210
],
[
776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164,
1130, 788, 1552, 754
],
[
696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822,
1164, 560, 1358
],
[
582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708,
1050, 674, 1244
],
[
274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628,
514, 1050, 708
],
[
502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856,
514, 1278, 480
],
[
194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320,
662, 742, 856
],
[
308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662,
320, 1084, 514
],
[
194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388,
274, 810, 468
],
[
536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764,
730, 388, 1152, 354
],
[
502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114,
308, 650, 274, 844
],
[
388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194,
536, 388, 730
],
[
354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0,
342, 422, 536
],
[
468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536,
342, 0, 764, 194
],
[
776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274,
388, 422, 764, 0, 798
],
[
662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730,
536, 194, 798, 0
],
]
data['num_vehicles'] = 10
data['depot'] = 0
return data
def print_solution(data, manager, routing, solution):
"""Prints solution on console."""
print(f'Objective: {solution.ObjectiveValue()}')
max_route_distance = 0
for vehicle_id in range(data['num_vehicles']):
index = routing.Start(vehicle_id)
plan_output = 'Route for vehicle {}:\n'.format(vehicle_id)
route_distance = 0
while not routing.IsEnd(index):
plan_output += ' {} -> '.format(manager.IndexToNode(index))
previous_index = index
index = solution.Value(routing.NextVar(index))
route_distance += routing.GetArcCostForVehicle(
previous_index, index, vehicle_id)
plan_output += '{}\n'.format(manager.IndexToNode(index))
plan_output += 'Distance of the route: {}m\n'.format(route_distance)
print(plan_output)
max_route_distance = max(route_distance, max_route_distance)
print('Maximum of the route distances: {}m'.format(max_route_distance))
def main():
"""Entry point of the program."""
# Instantiate the data problem.
data = create_data_model()
# Create the routing index manager.
manager = pywrapcp.RoutingIndexManager(len(data['distance_matrix']),
data['num_vehicles'], data['depot'])
# Create Routing Model.
routing = pywrapcp.RoutingModel(manager)
# Create and register a transit callback.
def distance_callback(from_index, to_index):
"""Returns the distance between the two nodes."""
# Convert from routing variable Index to distance matrix NodeIndex.
from_node = manager.IndexToNode(from_index)
to_node = manager.IndexToNode(to_index)
return data['distance_matrix'][from_node][to_node]
transit_callback_index = routing.RegisterTransitCallback(distance_callback)
# Define cost of each arc.
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)
# Add Distance constraint.
#dimension_name = 'Distance'
#routing.AddDimension(
# transit_callback_index,
# 0, # no slack
# 3_000, # vehicle maximum travel distance
# True, # start cumul to zero
# dimension_name)
#distance_dimension = routing.GetDimensionOrDie(dimension_name)
#distance_dimension.SetGlobalSpanCostCoefficient(100)
# The Codes for Balancing Deliveries for Each Vehicle
dimension_name = 'Count'
routing.AddConstantDimension(
1, # increment by one every time
len(data['distance_matrix']), # large enough
True, # set count to zero
dimension_name)
count_dimension = routing.GetDimensionOrDie(dimension_name)
count_dimension.SetGlobalSpanCostCoefficient(10_000)
# Add penalty if vehicle serve too much nodes
for v in range(manager.GetNumberOfVehicles()):
end = routing.End(v)
count_dimension.SetCumulVarSoftUpperBound(
end, # index
(len(data['distance_matrix']) - 1) // data['num_vehicles'] + 1, # soft max
10_000 # penalty
)
# Setting first solution heuristic.
search_parameters = pywrapcp.DefaultRoutingSearchParameters()
search_parameters.first_solution_strategy = (
routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC)
search_parameters.local_search_metaheuristic = (
routing_enums_pb2.LocalSearchMetaheuristic.GUIDED_LOCAL_SEARCH)
search_parameters.time_limit.FromSeconds(5)
search_parameters.log_search = True
# Solve the problem.
solution = routing.SolveWithParameters(search_parameters)
# Print solution on console.
if solution:
print_solution(data, manager, routing, solution)
else:
print('No solution found !')
if __name__ == '__main__':
main()

Possible output:

./vrp_fairness.py
Objective: 100340
Route for vehicle 0:
 0 ->  1 -> 0
Distance of the route: 1096m

Route for vehicle 1:
 0 ->  16 ->  14 -> 0
Distance of the route: 1324m

Route for vehicle 2:
 0 ->  6 ->  8 -> 0
Distance of the route: 1004m

Route for vehicle 3:
 0 ->  5 -> 0
Distance of the route: 548m

Route for vehicle 4:
 0 ->  10 ->  2 -> 0
Distance of the route: 1712m

Route for vehicle 5:
 0 ->  15 ->  11 -> 0
Distance of the route: 1552m

Route for vehicle 6:
 0 ->  9 -> 0
Distance of the route: 388m

Route for vehicle 7:
 0 ->  3 ->  4 -> 0
Distance of the route: 1392m

Route for vehicle 8:
 0 ->  13 ->  12 -> 0
Distance of the route: 936m

Route for vehicle 9:
 0 ->  7 -> 0
Distance of the route: 388m

Maximum of the route distances: 1712m
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment