|
#!/usr/bin/env python3 |
|
from ortools.constraint_solver import routing_enums_pb2 |
|
from ortools.constraint_solver import pywrapcp |
|
|
|
|
|
def create_data_model(): |
|
"""Stores the data for the problem.""" |
|
data = {} |
|
data['distance_matrix'] = [ |
|
[ |
|
0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, |
|
468, 776, 662 |
|
], |
|
[ |
|
548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, |
|
1016, 868, 1210 |
|
], |
|
[ |
|
776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, |
|
1130, 788, 1552, 754 |
|
], |
|
[ |
|
696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, |
|
1164, 560, 1358 |
|
], |
|
[ |
|
582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, |
|
1050, 674, 1244 |
|
], |
|
[ |
|
274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, |
|
514, 1050, 708 |
|
], |
|
[ |
|
502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, |
|
514, 1278, 480 |
|
], |
|
[ |
|
194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, |
|
662, 742, 856 |
|
], |
|
[ |
|
308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, |
|
320, 1084, 514 |
|
], |
|
[ |
|
194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, |
|
274, 810, 468 |
|
], |
|
[ |
|
536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, |
|
730, 388, 1152, 354 |
|
], |
|
[ |
|
502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, |
|
308, 650, 274, 844 |
|
], |
|
[ |
|
388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, |
|
536, 388, 730 |
|
], |
|
[ |
|
354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, |
|
342, 422, 536 |
|
], |
|
[ |
|
468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, |
|
342, 0, 764, 194 |
|
], |
|
[ |
|
776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, |
|
388, 422, 764, 0, 798 |
|
], |
|
[ |
|
662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, |
|
536, 194, 798, 0 |
|
], |
|
] |
|
data['num_vehicles'] = 10 |
|
data['depot'] = 0 |
|
return data |
|
|
|
|
|
def print_solution(data, manager, routing, solution): |
|
"""Prints solution on console.""" |
|
print(f'Objective: {solution.ObjectiveValue()}') |
|
max_route_distance = 0 |
|
for vehicle_id in range(data['num_vehicles']): |
|
index = routing.Start(vehicle_id) |
|
plan_output = 'Route for vehicle {}:\n'.format(vehicle_id) |
|
route_distance = 0 |
|
while not routing.IsEnd(index): |
|
plan_output += ' {} -> '.format(manager.IndexToNode(index)) |
|
previous_index = index |
|
index = solution.Value(routing.NextVar(index)) |
|
route_distance += routing.GetArcCostForVehicle( |
|
previous_index, index, vehicle_id) |
|
plan_output += '{}\n'.format(manager.IndexToNode(index)) |
|
plan_output += 'Distance of the route: {}m\n'.format(route_distance) |
|
print(plan_output) |
|
max_route_distance = max(route_distance, max_route_distance) |
|
print('Maximum of the route distances: {}m'.format(max_route_distance)) |
|
|
|
|
|
|
|
def main(): |
|
"""Entry point of the program.""" |
|
# Instantiate the data problem. |
|
data = create_data_model() |
|
|
|
# Create the routing index manager. |
|
manager = pywrapcp.RoutingIndexManager(len(data['distance_matrix']), |
|
data['num_vehicles'], data['depot']) |
|
|
|
# Create Routing Model. |
|
routing = pywrapcp.RoutingModel(manager) |
|
|
|
|
|
# Create and register a transit callback. |
|
def distance_callback(from_index, to_index): |
|
"""Returns the distance between the two nodes.""" |
|
# Convert from routing variable Index to distance matrix NodeIndex. |
|
from_node = manager.IndexToNode(from_index) |
|
to_node = manager.IndexToNode(to_index) |
|
return data['distance_matrix'][from_node][to_node] |
|
|
|
transit_callback_index = routing.RegisterTransitCallback(distance_callback) |
|
|
|
# Define cost of each arc. |
|
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index) |
|
|
|
# Add Distance constraint. |
|
#dimension_name = 'Distance' |
|
#routing.AddDimension( |
|
# transit_callback_index, |
|
# 0, # no slack |
|
# 3_000, # vehicle maximum travel distance |
|
# True, # start cumul to zero |
|
# dimension_name) |
|
#distance_dimension = routing.GetDimensionOrDie(dimension_name) |
|
#distance_dimension.SetGlobalSpanCostCoefficient(100) |
|
|
|
|
|
# The Codes for Balancing Deliveries for Each Vehicle |
|
dimension_name = 'Count' |
|
routing.AddConstantDimension( |
|
1, # increment by one every time |
|
len(data['distance_matrix']), # large enough |
|
True, # set count to zero |
|
dimension_name) |
|
count_dimension = routing.GetDimensionOrDie(dimension_name) |
|
count_dimension.SetGlobalSpanCostCoefficient(10_000) |
|
|
|
# Add penalty if vehicle serve too much nodes |
|
for v in range(manager.GetNumberOfVehicles()): |
|
end = routing.End(v) |
|
count_dimension.SetCumulVarSoftUpperBound( |
|
end, # index |
|
(len(data['distance_matrix']) - 1) // data['num_vehicles'] + 1, # soft max |
|
10_000 # penalty |
|
) |
|
|
|
# Setting first solution heuristic. |
|
search_parameters = pywrapcp.DefaultRoutingSearchParameters() |
|
search_parameters.first_solution_strategy = ( |
|
routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC) |
|
search_parameters.local_search_metaheuristic = ( |
|
routing_enums_pb2.LocalSearchMetaheuristic.GUIDED_LOCAL_SEARCH) |
|
search_parameters.time_limit.FromSeconds(5) |
|
search_parameters.log_search = True |
|
|
|
# Solve the problem. |
|
solution = routing.SolveWithParameters(search_parameters) |
|
|
|
# Print solution on console. |
|
if solution: |
|
print_solution(data, manager, routing, solution) |
|
else: |
|
print('No solution found !') |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |