Install Screen
$ sudo apt install screen
Enter a new Screen Session
$ screen
Detach from current screen session
import pandas as pd | |
from random import random | |
flow = (list(range(1,10,1)) + list(range(10,1,-1)))*1000 | |
pdata = pd.DataFrame({"a":flow, "b":flow}) | |
pdata.b = pdata.b.shift(9) | |
data = pdata.iloc[10:] * random() # some noise | |
import numpy as np |
''' | |
I've found this little setup (https://pythonprogramming.net/community/262/TensorFlow%20For%20loop%20to%20set%20weights%20and%20biases/) | |
to create layers in a NN with a for loop. Unfortunately it doesn't really work - so here is a corrected version: | |
keep in mind, layer_config takes the form: [n_input, 200, 200, 200, 200, n_classes] | |
''' | |
def multilayer_perceptron(x, layer_config, name="neuralnet"): | |
''' | |
code from: https://pythonprogramming.net/community/262/TensorFlow%20For%20loop%20to%20set%20weights%20and%20biases/ | |
''' |
<!DOCTYPE html> | |
<html> | |
<head><title>SOUND</title></head> | |
<body> | |
<div>Frequence: <span id="frequency"></span></div> | |
<script type="text/javascript"> | |
var audioCtx = new (window.AudioContext || window.webkitAudioContext)(); | |
var oscillatorNode = audioCtx.createOscillator(); | |
var gainNode = audioCtx.createGain(); |
from scipy.io import readsav | |
import pandas as pd | |
tab = readsav('filename.sav') | |
d = dict() | |
for key in tab['table_name'].dtype.names: | |
v = tab['candidates'][key] | |
try: | |
v = v.byteswap().newbyteorder() |
Install Screen
$ sudo apt install screen
Enter a new Screen Session
$ screen
Detach from current screen session
# Fitting Polynomial Regression to the dataset | |
from sklearn.preprocessing import PolynomialFeatures | |
poly_reg = PolynomialFeatures(degree=4) | |
X_poly = poly_reg.fit_transform(X) | |
pol_reg = LinearRegression() | |
pol_reg.fit(X_poly, y) | |
# Visualizing the Polymonial Regression results | |
def viz_polymonial(): | |
plt.scatter(X, y, color='red') |