Created
May 19, 2015 20:43
-
-
Save MohamedRamadanSaad/3ecc3e3b01f7782c15a5 to your computer and use it in GitHub Desktop.
NLP NaiveBaise , Python
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
__author__ = 'Mohamed_Ramadan_PC' | |
f1 =open('E:\\healthy.txt','r+') | |
f2 =open('E:\\unhealthy.txt','r+') | |
f3=open('E:\\NoOfHealthy.txt','r+') | |
f4=open('E:\\NoOfUnHealthy.txt','r+') | |
def learn(food,sort): | |
TheMeal=food.split(" ") | |
for meal in TheMeal: | |
if sort==1: | |
f1.write(meal+" ") | |
x=+1 | |
else : | |
f2.write(meal+" ") | |
def predict(meal,laplace): | |
f1 =open('E:\\healthy.txt','r+') | |
f2 =open('E:\\unhealthy.txt','r+') | |
t1=f1.read() | |
healthy_length=t1.split(" ") | |
t2=f2.read() | |
unhealthy_length=t2.split(" ") | |
f3.write('{}'.format(len(healthy_length)-1)) | |
f4.write('{}'.format(len(unhealthy_length)-1)) | |
healthy_counter=len(healthy_length)-1 | |
unhealthy_counter=len(unhealthy_length)-1 | |
all_food=healthy_counter + unhealthy_counter | |
p_h=(healthy_counter+laplace)/(all_food*1.0+laplace*2) | |
p_unh=(unhealthy_counter+laplace)/(all_food*1.0+laplace*2) | |
print("total foods= {}".format(all_food)) | |
print("Healthy foods= {}".format(healthy_counter)) | |
print("Un-Healthy foods= {}".format(unhealthy_counter)) | |
print("p_h= {}".format(p_h)) | |
print("p_unh= {}".format(p_unh)) | |
print("Healthy words= {}".format(healthy_length)) | |
print("Un-healthy words= {}".format(unhealthy_length)) | |
meals=meal.split(" ") | |
p_f_h=0.1 | |
p_f_unh=0.1 | |
for food in meals: | |
if food in healthy_length: | |
p_f_unh*=(1*1.0+laplace)/(unhealthy_counter+laplace*all_food) | |
else : | |
p_f_h*=(1*1.0+laplace)/(healthy_counter+laplace*all_food) | |
print("p_f_h= {}".format(p_f_h)) | |
print("p_f_unh= {}".format(p_f_unh)) | |
p_h_f=(p_h*p_f_h)/(p_f_h*p_h+p_f_unh*p_unh) | |
p_unh_f=(p_unh*p_f_unh)/(p_f_h*p_h+p_f_unh*p_unh) | |
print("p_h_f= {}".format(p_h_f)) | |
print("p_unh_f= {}".format(p_unh_f)) | |
if(p_h_f>p_unh_f): | |
print("This meal is Classified as Healthy meal ") | |
else : | |
print("This meal is Classified as Un-Healthy meal ") | |
learn("tomato",1) | |
learn("vegetable",1) | |
learn("Bread rice macaron cream_chante",0) | |
learn("tost",1) | |
f1.close() | |
f2.close() | |
predict("rice vegetable tomato",1) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment