Skip to content

Instantly share code, notes, and snippets.

@Mohamedemad4
Last active February 8, 2018 14:53
Show Gist options
  • Save Mohamedemad4/f2a843db22a9b06f57cf38b1ee930cff to your computer and use it in GitHub Desktop.
Save Mohamedemad4/f2a843db22a9b06f57cf38b1ee930cff to your computer and use it in GitHub Desktop.
A Timedistributed Version Difference of Structural Similarity (DSSIM loss function)
from keras.objectives import *
import keras_contrib.backend as KC
class DSSIM_TD():
def __init__(self, k1=0.01, k2=0.03, kernel_size=3, max_value=1.0,n_imgs=0):
"""
A Timedistributed Version Difference of Structural Similarity (DSSIM loss function). Clipped between 0 and 0.5
Note : You should add a regularization term like a l2 loss in addition to this one.
Note : In theano, the `kernel_size` must be a factor of the output size. So 3 could
not be the `kernel_size` for an output of 32.
# Arguments
k1: Parameter of the SSIM (default 0.01)
k2: Parameter of the SSIM (default 0.03)
kernel_size: Size of the sliding window (default 3)
max_value: Max value of the output (default 1.0)
n_imgs: Number of prediected Images in each sample
"""
self.__name__ = 'DSSIMObjective_TD'
self.kernel_size = kernel_size
self.k1 = k1
self.k2 = k2
self.max_value = max_value
self.c1 = (self.k1 * self.max_value) ** 2
self.c2 = (self.k2 * self.max_value) ** 2
self.dim_ordering = K.image_data_format()
self.backend = KC.backend()
self.n_imgs=n_imgs
if n_imgs==0:
raise ValueError('n_imgs can\'t equal zero,use DSSIMObjective instead')
def __int_shape(self, x):
return KC.int_shape(x) if self.backend == 'tensorflow' else KC.shape(x)
def __call__(self, y_true_o, y_pred_o):
# There are additional parameters for this function
# Note: some of the 'modes' for edge behavior do not yet have a gradient definition in the Theano tree
# and cannot be used for learning
kernel = [self.kernel_size, self.kernel_size]
ks=[]
total_t=self.max_value*self.n_imgs
for in_image in range(0,self.n_imgs):
y_true=y_true_o[:,in_image]
y_pred=y_pred_o[:,in_image]
y_true = KC.reshape(y_true, [-1] + list(self.__int_shape(y_pred)[1:]))
y_pred = KC.reshape(y_pred, [-1] + list(self.__int_shape(y_pred)[1:]))
patches_pred = KC.extract_image_patches(y_pred, kernel, kernel, 'valid', self.dim_ordering)
patches_true = KC.extract_image_patches(y_true, kernel, kernel, 'valid', self.dim_ordering)
# Reshape to get the var in the cells
bs, w, h, c1, c2, c3 = self.__int_shape(patches_pred)
patches_pred = KC.reshape(patches_pred, [-1, w, h, c1 * c2 * c3])
patches_true = KC.reshape(patches_true, [-1, w, h, c1 * c2 * c3])
# Get mean
u_true = KC.mean(patches_true, axis=-1)
u_pred = KC.mean(patches_pred, axis=-1)
# Get variance
var_true = K.var(patches_true, axis=-1)
var_pred = K.var(patches_pred, axis=-1)
# Get std dev
covar_true_pred = K.mean(patches_true * patches_pred, axis=-1) - u_true * u_pred
ssim = (2 * u_true * u_pred + self.c1) * (2 * covar_true_pred + self.c2)
denom = (K.square(u_true) + K.square(u_pred) + self.c1) * (var_pred + var_true + self.c2)
ssim /= denom # no need for clipping, c1 and c2 make the denom non-zero
ks.append(K.mean((1.0 - ssim) / 2.0))
all_summed=0
for i in ks:
all_summed+=i
return all_summed/total_t
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment