Last active
September 6, 2019 18:23
-
-
Save MokkeMeguru/09ad03427aea4e0d01970b9aba282e0d to your computer and use it in GitHub Desktop.
MatvecLU Gradient
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
import tensorflow_probability as tfp | |
import tensorflow_probability.python.bijectors as tfb | |
import tensorflow_probability.python.distributions as tfd | |
def trainable_lu_factorization(event_size, | |
trainable=True, | |
batch_shape=(), | |
seed=None, | |
dtype=tf.float32, | |
name=None): | |
with tf.name_scope('trainable_lu_factorization'): | |
event_size = tf.convert_to_tensor(event_size, | |
dtype=tf.int32, | |
name='event_size') | |
batch_shape = tf.convert_to_tensor(batch_shape, | |
dtype=event_size.dtype, | |
name='batch_shape') | |
random_matrix = tf.Variable(tf.random.uniform( | |
shape=tf.concat([batch_shape, [event_size, event_size]], axis=0), | |
dtype=dtype, | |
seed=seed, | |
), | |
trainable=trainable, | |
name='conv1x1_weights') | |
def lu_p(random_matrix): | |
return tf.linalg.lu(tf.linalg.qr(random_matrix).q) | |
lower_upper = tfp.util.DeferredTensor(lambda m: lu_p(m)[0], | |
random_matrix) | |
permutation = tfp.util.DeferredTensor(lambda m: lu_p(m)[1], | |
random_matrix, | |
dtype=tf.int32, | |
shape=random_matrix.shape[:-1]) | |
return lower_upper, permutation | |
def build_model(): | |
channels = 3 | |
trainable = True | |
# conv1x1 setup | |
t_lower_upper, t_permutation = trainable_lu_factorization( | |
channels, trainable) | |
conv1x1 = tfb.MatvecLU(t_lower_upper, t_permutation, name='MatvecLU') | |
inv_conv1x1 = tfb.Invert(conv1x1) | |
# forward setup | |
fwd = tfp.layers.DistributionLambda( | |
lambda x: conv1x1(tfd.Deterministic(x))) | |
fwd.bijector = conv1x1 | |
# inverse setup | |
inv = tfp.layers.DistributionLambda( | |
lambda x: inv_conv1x1(tfd.Deterministic(x))) | |
inv.bijector = inv_conv1x1 | |
x: tf.Tensor = tf.keras.Input(shape=[28, 28, channels]) | |
fwd_x: tfp.distributions.TransformedDistribution = fwd(x) | |
# fwd_x: tf.Tensor = fwd_x.sample() | |
rev_fwd_x: tfp.distributions.TransformedDistribution = inv(fwd_x) | |
# rev_fwd_x: tf.Tensor = rev_fwd_x.sample() | |
example_model = tf.keras.Model(inputs=x, outputs=rev_fwd_x) | |
return example_model | |
def main(): | |
print('tensorflow : ', tf.__version__) # 2.0.0-rc0 | |
print('tensorflow-probability : ', tfp.__version__) # 0.8.0-rc0 | |
# setup environment | |
example_model = build_model() | |
example_model.summary() | |
real_x = tf.random.uniform(shape=[2, 28, 28, 3], dtype=tf.float32) | |
if example_model.weights == []: | |
print('No Trainable Variable exists') | |
else: | |
print('Some Trainable Variables exist') | |
with tf.GradientTape() as tape: | |
tape.watch(real_x) | |
out_x = example_model(real_x) | |
out_x = out_x | |
loss = out_x - real_x | |
print(tf.math.reduce_sum(real_x - out_x)) | |
# => nealy 0 | |
# ex. tf.Tensor(1.3522818e-05, shape=(), dtype=float32) | |
try: | |
print(tape.gradient(loss, real_x)) | |
except Exception as e: | |
print('Cannot Calculate Gradient') | |
print(e) | |
if __name__ == '__main__': | |
main() | |
########################################################## | |
# tensorflow : 2.0.0-rc0 | |
# tensorflow-probability : 0.8.0-rc0 | |
# Model: "model_35" | |
# _________________________________________________________________ | |
# Layer (type) Output Shape Param # | |
# ================================================================= | |
# input_36 (InputLayer) [(None, 28, 28, 3)] 0 | |
# _________________________________________________________________ | |
# distribution_lambda_70 (Dist ((None, 28, 28, 3), (None 0 | |
# _________________________________________________________________ | |
# distribution_lambda_71 (Dist ((None, 28, 28, 3), (None 0 | |
# ================================================================= | |
# Total params: 0 | |
# Trainable params: 0 | |
# Non-trainable params: 0 | |
# _________________________________________________________________ | |
# No Trainable Variable exists | |
# tf.Tensor(5.712954e-05, shape=(), dtype=float32) | |
# Cannot Calculate Gradient | |
# gradient registry has no entry for: Lu | |
########################################################### |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment