[source: http://www.r-bloggers.com/using-google-maps-api-and-r/] [address modifications added by MonkmanMH]
This script uses RCurl and RJSONIO to download data from Google's API to get the latitude, longitude, location type, and formatted address
library(RCurl)
library(RJSONIO)
library(plyr)
Build a URL to access the API:
url <- function(address, return.call = "json", sensor = "false") {
root <- "http://maps.google.com/maps/api/geocode/"
u <- paste(root, return.call, "?address=", address, "&sensor=", sensor, sep = "")
return(URLencode(u))
}
Function to parse the results>
geoCode <- function(address,verbose=FALSE) {
if(verbose) cat(address,"\n")
u <- url(address)
doc <- getURL(u)
x <- fromJSON(doc,simplify = FALSE)
if(x$status=="OK") {
lat <- x$results[[1]]$geometry$location$lat
lng <- x$results[[1]]$geometry$location$lng
location_type <- x$results[[1]]$geometry$location_type
formatted_address <- x$results[[1]]$formatted_address
return(c(lat, lng, location_type, formatted_address))
Sys.sleep(0.5)
} else {
return(c(NA,NA,NA, NA))
}
}
Test with one address
address <- geoCode("553 Superior Street, Victoria, BC")
First two items are the latitude and longitude coordinates, then the location type and formatted address
address
We can use Plyr to geocode a vector with addresses
address <- c("553 Superior Street, Victoria, BC","Serious Coffee James Bay, Victoria, BC")
locations <- ldply(address, function(x) geoCode(x))
names(locations) <- c("lat","lon","location_type", "formatted")
head(locations)
The following are the different location types:
- "ROOFTOP" indicates that the returned result is a precise geocode for which we have location information accurate down to street address precision.
- RANGE_INTERPOLATED" indicates that the returned result reflects an approximation (usually on a road) interpolated between two precise points (such as intersections). Interpolated results are generally returned when rooftop geocodes are unavailable for a street address.
- GEOMETRIC_CENTER" indicates that the returned result is the geometric center of a result such as a polyline (for example, a street) or polygon (region).
- APPROXIMATE" indicates that the returned result is approximate.
For more info on Google Maps API check here
Source http://ekonometrics.blogspot.ca/2011/04/google-maps-and-travel-times.html
# ############################################
# all the necessary packages
if (!require(rjson)) install.packages("rjson")
library(rjson)
#
if (!require(RJSONIO)) install.packages("RJSONIO")
library(RJSONIO)
#
if (!require(gooJSON)) install.packages("gooJSON")
library(gooJSON)
#
if (!require(RCurl)) install.packages("RCurl")
library(RCurl)
#
#An example of coordinates
xlat<-57.372801
xlong<-2.016214
ylat<-57.459688
ylong<-2.790558
#
#Writing the corresponding url
z<-paste("http://maps.google.com/maps/api/directions/json?origin=", +
xlat,",",xlong,"&destination=",ylat,",",ylong," +
&sensor=false",sep="")
#
#To get and read the json file
x<-fromJSON(getURL(url=z))
#
#To catch the Google limitation on requests (it often happens)
if(x$status=="OVER_QUERY_LIMIT"){
while(x$status=="OVER_QUERY_LIMIT"){Sys.sleep(10*60) ;print("wait for 10 mins")}
}
#
x<-fromJSON(getURL(url=z))
#
#
#To get the total travel time
TRAVEL_TIME<-x[[2]][[1]][[2]][[1]][[2]]$text
print(TRAVEL_TIME)
#
RJSON http://cran.r-project.org/web/packages/rjson/index.html http://crantastic.org/packages/rjson http://stackoverflow.com/questions/2617600/importing-data-from-a-json-file-into-r http://laclefyoshi.blogspot.ca/2011/02/processing-json-with-r-rjson.html
RJSONIO http://cran.r-project.org/web/packages/RJSONIO/index.html http://www.inside-r.org/packages/cran/RJSONIO/docs/fromJSON http://www.omegahat.org/RJSONIO/
gooJSON http://cran.r-project.org/web/packages/gooJSON/index.html
Stack Overflow http://stackoverflow.com/questions/3845639/how-can-i-use-google-maps-api-to-return-a-journey-time-with-and-without-traffic http://stackoverflow.com/questions/1042885/using-google-maps-api-to-get-travel-time-data
https://developers.google.com/maps/documentation/javascript/distancematrix