Skip to content

Instantly share code, notes, and snippets.

@MrDwarf7
Created November 30, 2023 22:41
Show Gist options
  • Save MrDwarf7/ca9bbfa77a6c3791debd4e326cb4ae2c to your computer and use it in GitHub Desktop.
Save MrDwarf7/ca9bbfa77a6c3791debd4e326cb4ae2c to your computer and use it in GitHub Desktop.
ConvolutedScriptsTwo
use serde::{Deserialize, Serialize};
use serde_json::{json, Value};
#[derive(Serialize, Deserialize, Debug)]
struct ComplexData {
data: Vec<u32>,
message: String,
}
fn obscure_serialization(data: &ComplexData) -> Value {
serde_json::to_value(data).unwrap_or(json!({"error": "Serialization failed"}))
}
fn main() {
let data = ComplexData {
data: vec![1, 2, 3, 4, 5],
message: String::from("Serde in Rust"),
};
let serialized = obscure_serialization(&data);
println!("Serialized data: {}", serialized);
}
from pydantic import BaseModel, validator
import itertools
class ObfuscatedDataModel(BaseModel):
data: list[int]
obscure_transformation: str
@validator('data', pre=True, always=True)
def convoluted_processing(cls, v, values, **kwargs):
transformation = values.get('obscure_transformation', '')
if transformation == 'quadratic':
return [x**2 for x in v]
elif transformation == 'factorial':
factorial = lambda x: x * factorial(x-1) if x > 1 else 1
return list(map(factorial, v))
return list(itertools.accumulate(v, lambda x, y: x * y))
def complex_analysis(self):
return sum(self.data) % len(self.data)
# Usage
model = ObfuscatedDataModel(data=[1, 2, 3, 4], obscure_transformation='factorial')
print(model.complex_analysis())
import _ from 'lodash';
type ConfusingObject = { [key: string]: any };
const processData = (data: ConfusingObject): ConfusingObject => {
const deepClonedData = _.cloneDeep(data);
_.forEach(deepClonedData, (value, key) => {
if (_.isArray(value)) {
deepClonedData[key] = _.chain(value).map(_.toString).sort().value();
} else if (_.isPlainObject(value)) {
deepClonedData[key] = processData(value);
} else {
deepClonedData[key] = _.isNumber(value) ? _.multiply(value, _.random(1, 10)) : value;
}
});
return _.zipObject(_.shuffle(Object.keys(deepClonedData)), _.values(deepClonedData));
};
const exampleData = { a: [2, 1, 3], b: { c: 5, d: 7 }, e: "text" };
console.log(processData(exampleData));
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment