Last active
November 29, 2019 00:56
-
-
Save Mukei/37b167a4821aac1320407b7ed2a3a591 to your computer and use it in GitHub Desktop.
How to use Kaggle in Google Colaboratory
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#source https://www.kaggle.com/general/64962 | |
!pip install kaggle | |
#Authenticating with Kaggle API | |
from googleapiclient.discovery import build | |
import io, os | |
from googleapiclient.http import MediaIoBaseDownload | |
from google.colab import auth | |
auth.authenticateuser() driveservice = build('drive', 'v3') | |
results = driveservice.files().list( q="name = 'kaggle.json'", fields="files(id)").execute() kaggleapikey = results.get('files', []) filename = "/content/.kaggle/kaggle.json" os.makedirs(os.path.dirname(filename), existok=True) | |
request = driveservice.files().getmedia(fileId=kaggleapikey[0]['id']) | |
fh = io.FileIO(filename, 'wb') | |
downloader = MediaIoBaseDownload(fh, request) | |
done = False | |
while done is False: | |
status, done = downloader.next_chunk() | |
print("Download %d%%." % int(status.progress() * 100)) | |
os.chmod(filename, 600) | |
#Create directories and prepare the data in colab | |
!mkdir /kaggleDogCat/ | |
!mkdir /kaggleDogCat/models | |
!mkdir /kaggleDogCat/datasets | |
!mkdir /kaggleDogCat/datasets/dogs-vs-cats | |
#download the dataset from kaggle | |
import zipfile | |
!kaggle competitions download -c dogs-vs-cats -p /kaggleDogCat/datasets/dogs-vs-cats | |
os.chdir('/kaggleDogCat/datasets/dogs-vs-cats/') | |
#extract the images | |
for file in os.listdir(): | |
if os.path.splitext(file)1==".zip": | |
zipref = zipfile.ZipFile(file, 'r') zipref.extractall() | |
zip_ref.close() | |
#create directories | |
!mkdir /kaggleDogCat/datasets/dogs-vs-cats/valid | |
!mkdir /kaggleDogCat/datasets/dogs-vs-cats/train/cats | |
!mkdir /kaggleDogCat/datasets/dogs-vs-cats/train/dogs | |
!mkdir /kaggleDogCat/datasets/dogs-vs-cats/valid/cats | |
!mkdir /kaggleDogCat/datasets/dogs-vs-cats/valid/dogs | |
!mkdir /kaggleDogCat/datasets/dogs-vs-cats/test1/predict | |
#copy images to the relevant class directory (e.g if the image name starts with cat so move it to 'cats' directory) | |
!mv /kaggleDogCat/datasets/dogs-vs-cats/train/cat.jpg /kaggleDogCat/datasets/dogs-vs-cats/train/cats/ !mv /kaggleDogCat/datasets/dogs-vs-cats/train/dog.jpg /kaggleDogCat/datasets/dogs-vs-cats/train/dogs/ | |
#copy sample images to the validation directory | |
!cp /kaggleDogCat/datasets/dogs-vs-cats/train/cats/cat11.jpg /kaggleDogCat/datasets/dogs-vs-cats/valid/cats/ | |
!cp /kaggleDogCat/datasets/dogs-vs-cats/train/dogs/dog11.jpg /kaggleDogCat/datasets/dogs-vs-cats/valid/dogs/ | |
#creating a new layer is can be simple line in our code | |
you can check first, i think that you don't need to intall it | |
hera you have also the proper install steps | |
! pip install keras | |
! pip install numpy | |
! pip install pillow | |
#We are done with importing the dataset from Kaggle and saving it locally on colab platform | |
#import the tools that you need to work with | |
#such as: | |
import numpy as np | |
import keras | |
from keras.models import Sequential | |
from keras.layers import Dense, Dropout, Flatten, Activation | |
from keras.preprocessing.image import ImageDataGenerator | |
from keras.layers import Conv2D, MaxPooling2D | |
#finally, upload the data and copty yous steps. | |
traindataset = ("/kaggleDogCat/datasets/dogs-vs-cats/train/") validdataset = ("/kaggleDogCat/datasets/dogs-vs-cats/valid/") | |
test_dataset = ("/kaggleDogCat/datasets/dogs-vs-cats/test1/") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment