-
-
Save Myfanwy/52393383267e9d58f848 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(SmarterPoland) | |
library(riverplot) | |
library(RColorBrewer) | |
library(graphics) | |
library(reshape2) | |
library(plyr) | |
library(stringr) | |
library(countrycode) | |
# DOWNLOAD THE DATA | |
df <- getEurostatRaw(kod="migr_asyappctzm") | |
raw <- df | |
# CLEAN THE DATA | |
temp <- unlist(strsplit(colnames(df)[1],",")) | |
cleaned <- data.frame(str_split_fixed(df[,1],",",6)) | |
df <- cbind(cleaned,df[,2:94]) | |
colnames(df)[1:6] <- temp | |
colnames(df)[6] <- "unit" | |
# STRIP OUT THE BITS WE DON'T NEED | |
df2 <- subset(df, sex == "T" & age == "TOTAL" & !geo %in% c("EU28","TOTAL"), select=c(colnames(df)[c(1,5)],colnames(df)[7:99][grepl(2015,colnames(df)[7:99])])) | |
df2 <- melt(df2, id=colnames(df2)[1:2]) | |
df2 <- df2[complete.cases(df2),] | |
# SUMMARISE THE NUMBERS ACCORDING TO COUNTRY OF ORIGIN | |
dfs <- ddply(df2, c("citizen"), summarise, num = sum(value)) | |
dfs <- dfs[order(-dfs$num),] | |
dfs$citizen <- as.character(dfs$citizen) | |
dfs <- subset(dfs, !(citizen %in% dfs$citizen[1:2] )) | |
# SUMMARISE ACCORDING TO COUNTRY OF DESTINATION | |
dest <- ddply(df2, c("geo"), summarise, num = sum(value)) | |
dest <- dest[order(-dest$num),] | |
dest$geo <- as.character(dest$geo) | |
# CREATE SUBSETS OF THE KEY COUNTRIES TO MAKE OUR EVENTUAL PLOT CLEANER | |
countries <- dfs$citizen[1:10] | |
destinations <- dest$geo[1:10] | |
# GET DATA FOR A SPECIFIC YEAR AND THEN EITHER PLOT ONLY FOR KEY ORIGINS: | |
#RP <- subset(df, sex == "T" & age == "TOTAL" & !geo %in% c("EU28","TOTAL") & citizen %in% countries, select=c(colnames(df)[c(1,5)],colnames(df)[7:99][grepl(2015,colnames(df)[7:99])])) | |
# ONLY FOR KEY DESTINATIONS: | |
#RP <- subset(df, sex == "T" & age == "TOTAL" & !geo %in% c("EU28","TOTAL") & geo %in% destinations, select=c(colnames(df)[c(1,5)],colnames(df)[7:99][grepl(2015,colnames(df)[7:99])])) | |
# OR BOTH | |
RP <- subset(df, sex == "T" & age == "TOTAL" & !geo %in% c("EU28","TOTAL") & citizen %in% countries & geo %in% destinations, select=c(colnames(df)[c(1,5)],colnames(df)[7:99][grepl(2015,colnames(df)[7:99])])) | |
# CREATE THE DATASET THAT WE WILL USE FOR OUR CHART | |
RP <- melt(RP, id=colnames(RP)[1:2]) | |
RP <- RP[complete.cases(RP),] | |
RP$route <- paste0(RP[,1],"-",RP[,2]) | |
RP <- ddply(RP, c("route"), summarise, from = head(citizen,1),to = head(geo,1),num = sum(value)) | |
# THIS BIT DEFINS THE WIDTHS OF EACH SEGMENT | |
edges <- RP[,c(2:4)] | |
edges[,1] <- as.character(edges[,1]) | |
edges[,2] <- as.character(edges[,2]) | |
colnames(edges) <- c("N1","N2","Value") | |
# THIS ONE SORTS OUT WHICH SIDE OF THE CHART EACH FLOW STARTS AND ENDS | |
nodes = data.frame(ID = unique(c(edges$N1, edges$N2)), stringsAsFactors = FALSE) | |
nodes$x <- 2 | |
nodes$x[(nodes$ID %in% countries)] <- 1 | |
# NOW WE CAN SORT | |
nodes$num <- mapply(function(x) subset(dfs, citizen == x)$num, nodes$ID) | |
nodes$dest <- mapply(function(x) subset(dest, geo == x)$num, nodes$ID) | |
nodes$set <- mapply(function(x) ifelse(x %in% countries,1,0), nodes$ID) | |
nodes$dest[(nodes$set==1)] <- 0 | |
nodes$dest <- as.numeric(nodes$dest) | |
nodes0 <- subset(nodes, set == 0) | |
nodes1 <- subset(nodes, set == 1) | |
nodes0 <- nodes0[order(nodes0$dest),] | |
nodes1 <- nodes1[order(nodes1$num),] | |
nodes0$index <- rank(-nodes0$dest) | |
nodes1$index <- rank(-nodes1$num) | |
nodes <- rbind(nodes1,nodes0) | |
row.names(nodes) <- NULL | |
# GET CONTINENTS FOR ORIGIN COLOURS | |
nodes1$cont <- countrycode(nodes1$ID,"iso2c","continent") | |
# I HAPPEND TO KNOW IT WON'T PICK UP KOSOVO, SO: | |
nodes1$cont[(nodes1$ID == "XK")] <- "Europe" | |
# SET UP COLOURS FOR SANKEY CHART | |
# length(unique(nodes1$cont)) | |
conts <- unique(nodes1$cont) | |
contsC <- c("firebrick2","darkgoldenrod1","chartreuse3") | |
p1 <- mapply(function(x) contsC[(conts==x)], nodes1$cont) | |
p2 <- rep("dodgerblue3",nrow(nodes0)) | |
palette <- c(p1,p2) | |
styles = lapply(as.numeric(row.names(nodes)), function(n) { | |
list(col = palette[n], lty = 0, textcol = "black") | |
}) | |
names(styles) = nodes$ID | |
# DRAW THE CHART :-) | |
rp <- makeRiver(nodes,edges,node_styles=styles) | |
riverplot(rp,node_margin=0.025,plot_area=0.9) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment