Created
September 23, 2020 21:43
-
-
Save N8python/93139a670408b163100207fd39430c8c to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
async function main() { | |
const fs = require("fs"); | |
const R = require("ramda"); | |
const tf = require("@tensorflow/tfjs-node"); | |
const fsExtra = require('fs-extra'); | |
const text = fs.readFileSync("input.txt").toString(); | |
const chars = Array.from(new Set(text.split(""))); | |
const encoding = Object.fromEntries(chars.map((x, i) => [x, i])); | |
const decoding = Object.fromEntries(chars.map((x, i) => [i, x])); | |
const sampleLength = 50; | |
const epochSize = 2000; | |
let currEpochIndex = 0; | |
let data = []; | |
let labels = []; | |
if (!fs.existsSync("outputs")) { | |
fs.mkdirSync("outputs"); | |
} else { | |
fsExtra.emptyDirSync("outputs") | |
} | |
function oneHotEncode(char) { | |
const vec = Array(chars.length).fill(0); | |
vec[encoding[char]] = 1; | |
return vec; | |
} | |
function sample(probs, temperature) { | |
return tf.tidy(() => { | |
const logits = tf.div(tf.log(probs), Math.max(temperature, 1e-6)); | |
const isNormalized = false; | |
// `logits` is for a multinomial distribution, scaled by the temperature. | |
// We randomly draw a sample from the distribution. | |
return tf.multinomial(logits, 1, null, isNormalized).dataSync()[0]; | |
}); | |
} | |
const charList = text.split("").map(oneHotEncode); | |
for (let i = 0; i < charList.length - sampleLength; i++) { | |
data.push(charList.slice(i, i + sampleLength)); | |
labels.push(charList[i + sampleLength]); | |
} | |
let trainData = tf.tensor(data.slice(currEpochIndex, currEpochIndex + epochSize)); | |
let trainLabels = tf.tensor(labels.slice(currEpochIndex, currEpochIndex + epochSize)); | |
const model = tf.sequential({ | |
layers: [ | |
tf.layers.lstm({ inputShape: [null, chars.length], units: 512, activation: "relu", returnSequences: true }), | |
tf.layers.lstm({ units: 512, activation: "relu", returnSequences: true }), | |
tf.layers.lstm({ units: 512, activation: "relu", returnSequences: false }), | |
tf.layers.dense({ units: chars.length, activation: "softmax" }), | |
] | |
}); | |
function outputText(length) { | |
let sentence = [chars[Math.floor(Math.random() * chars.length)]]; | |
let context = [oneHotEncode(sentence[0])]; | |
for (let i = 0; i < length - 1; i++) { | |
const output = Array.from(model.predict(tf.tensor3d([context])).dataSync()); | |
const max = Math.max(...output); | |
const idx = sample(tf.squeeze(output), 0.5); //output.findIndex(x => x === max); | |
sentence.push(decoding[idx]); | |
context.push(Array(chars.length).fill(undefined).map((_, i) => i === idx ? 1 : 0)); | |
if (context.length > sampleLength) { | |
context.shift(); | |
} | |
} | |
return sentence.join(""); | |
} | |
model.compile({ | |
optimizer: "adam", | |
loss: "categoricalCrossentropy", | |
metrics: ["accuracy"], | |
clipValue: 0.5, | |
learningRate: 0.0001 | |
}) | |
let epochAmt = 500; | |
function fitModel(epochNum = 0) { | |
model.fit(trainData, trainLabels, { | |
epochs: 1, | |
batchSize: 128, | |
callbacks: { | |
onBatchEnd(batch, logs) { | |
console.log(logs); | |
//console.log(outputText(100)); | |
}, | |
onTrainEnd(logs) { | |
console.log("EPOCH OVER"); | |
currEpochIndex += epochSize; | |
if (currEpochIndex >= data.length - epochSize * 2) { | |
currEpochIndex = 0; | |
} | |
trainData = tf.tensor(data.slice(currEpochIndex, currEpochIndex + epochSize)); | |
trainLabels = tf.tensor(labels.slice(currEpochIndex, currEpochIndex + epochSize)); | |
if ((epochNum + 1) % 10 === 0) { | |
fs.writeFileSync(`outputs/epoch${epochNum + 1}.txt`, outputText(1000)); | |
} else { | |
fs.writeFileSync(`outputs/epoch${epochNum + 1}.txt`, outputText(100)); | |
} | |
if (epochNum < epochAmt) { | |
setTimeout(() => { | |
fitModel(epochNum + 1); | |
}, 0) | |
} else { | |
if (logs && (logs.loss === logs.loss)) { | |
(async() => { await model.save(`file://./model`); })(); | |
} | |
} | |
} | |
} | |
}) | |
} | |
fitModel(); | |
} | |
main(); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment