Created
November 1, 2024 07:15
-
-
Save N8python/a56fec5cbcdcbfd1db7889adcf6873ae to your computer and use it in GitHub Desktop.
It's cursed: https://www.desmos.com/calculator/asjxggbglo. What if you had only one discrete variable that you could plug into a sum sign, and *everything else had to be perfectly continuous* - no floor, no mod, no tricks. Could you even DO a generalized 2d riemann sum that converges as k -> infinity. Find out now (spoiler: you kinda can) - modi…
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <stdio.h> | |
#include <math.h> | |
#include <time.h> | |
#define PI 3.14159265358979323846 | |
double s_inv(double x) { | |
return asin(2.0 * (x - 0.5)) / PI + 0.5; | |
} | |
double r(double x, double s) { | |
return tanh(s * sin(2.0 * PI * (x - 0.25))); | |
} | |
double s_awtooth(double x, double s) { | |
double inner = sin(PI * (x - 0.5) * r((x - 0.5) / 2.0, s)) / 2.0 + 0.5; | |
return s_inv(inner); | |
} | |
double f_loor(double x, double s) { | |
return x + s_awtooth(x, s) - 1.0; | |
} | |
double m_od(double x, double n, double s) { | |
return x - n * f_loor(x/n, s); | |
} | |
double x_p(double n, double k) { | |
return (m_od(n, k + 1, 2*k) - 1) / (k - 1) * 2.0 + (-1.0); | |
} | |
double y_p(double n, double k) { | |
return f_loor(n / (k + 1), k) / k * 2.0 + (-1.0); | |
} | |
double C(double x, double y) { | |
return x*x + y*y - 1.0; | |
} | |
double A(double x, double k) { | |
return 1.0 / (1.0 + exp(-k * (-x))); | |
} | |
double V(double k) { | |
double total = 0.0; | |
const double A_bbox = 4.0; | |
long n_max = (long)((k + 1) * (k + 1)); | |
for(long n = 0; n < n_max; n++) { | |
double x = x_p(n, k); | |
double y = y_p(n, k); | |
total += A(C(x, y), k); | |
} | |
return (total / ((k + 1)*(k + 1))) * A_bbox; | |
} | |
int main() { | |
// Print CSV header | |
printf("k,area,error,time_ms\n"); | |
// Calculate for logarithmically spaced k values | |
const int num_k = 100; | |
double k_min = 10; | |
double k_max = 30000.0; | |
double log_k_min = log(k_min); | |
double log_k_max = log(k_max); | |
for(int i = 0; i < num_k; i++) { | |
// Calculate k value | |
double log_k = log_k_min + (log_k_max - log_k_min) * i / (num_k - 1); | |
long k = (long)round(exp(log_k)); | |
// Time the calculation | |
clock_t start = clock(); | |
double area = V(k); | |
clock_t end = clock(); | |
double time_ms = 1000.0 * (end - start) / CLOCKS_PER_SEC; | |
double error = fabs(area - PI); | |
// Output CSV row | |
printf("%ld,%.10f,%.10f,%.2f\n", k, area, error, time_ms); | |
fflush(stdout); // Ensure immediate output | |
} | |
return 0; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment