Created
August 12, 2020 02:57
-
-
Save NBrown140/4ba8dbf19b58048816d9df55aadbdcba to your computer and use it in GitHub Desktop.
Gradient descent implementation on arbitrary 2d function
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import math as m | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from tqdm import tqdm | |
x_init, y_init = -1.6, -0.09 | |
alpha = 0.0001 | |
N = 100000 | |
# Rosenbrock banana function | |
f = lambda x, y: (1 - x)**2 + 100 * (y - x**2)**2 | |
# Other functions | |
#f = lambda x, y: np.sin(0.5 * np.power(x, 2) - 0.25 * np.power(y, 2) + 3) * np.cos(2 * x + 1 - np.exp(y)) | |
#f = lambda x, y: np.sin(x) * np.cos(y) | |
def gradient(f, x, y): | |
h = 0.001 | |
# Symmetric difference quotient | |
grad_x = (f(x + h, y) - f(x - h, y)) / (2 * h) | |
grad_y = (f(x, y + h) - f(x, y - h)) / (2 * h) | |
return grad_x, grad_y | |
x, y = x_init, y_init | |
x_list, y_list = [x_init], [y_init] | |
print(f"Initial x, y: {x}, {y}") | |
for step in tqdm(range(0, N)): | |
grad_x, grad_y = gradient(f, x, y) | |
#print(f"Gradient: {grad_x}, {grad_y}") | |
x = x - alpha * grad_x | |
y = y - alpha * grad_y | |
x_list.append(x) | |
y_list.append(y) | |
#print(x, y) | |
# Plot | |
x_grid = np.linspace(-4, 4, 101) | |
y_grid = np.linspace(-4, 4, 101) | |
X, Y = np.meshgrid(x_grid, y_grid) | |
F = f(X, Y) | |
plt.contourf(X, Y, F, 30) | |
plt.contour(X, Y, F, 30) | |
plt.scatter(x_list, y_list, color='r', s=5) | |
#plt.plot(x_list, y_list) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment